

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann Christian Schilling Delivery: December 19th, 2016 16:15 via the post boxes Discussion: December 21st, 2016

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 9

Exercise 1: Checking regular safety properties 3 Points Consider the following transition system TS over the atomic propositions $AP = \{a, b, c\}$.

In the lecture we have seen an algorithm for checking regular safety properties. The safety property E was given as an NFA \mathcal{A} that was accepting the bad prefixes of E.

The algorithm first computes the product $TS \otimes A$ and then checks whether the invariant $\neg F$ holds, where F is the set of final states of A.

If the invariant holds for $TS \otimes A$, then the property E holds for TS. Otherwise, the property E does not hold and the algorithm returns a sequence of states of TS as an error indication.

Apply the algorithm for the properties that are given by the following NFA.

Exercise 2: Non-blocking symbolic NFA

Consider the following DFA (i.e., deterministic NFA) \mathcal{A} over the alphabet $\Sigma = 2^{AP}$, where $AP = \{a, b, c\}$.

Give a non-blocking DFA \mathcal{A}' such that both automata accept the same language (i.e., $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$).

1 Point

Exercise 3: Büchi automata I

(a)

Describe the ω -languages of the following Büchi automata over the alphabet $\Sigma = \{A, B\}$. You may use ω -regular expressions or natural language.

Exercise 4: Büchi automata II

Construct a Büchi automaton over the alphabet $\Sigma = \{A, B\}$ whose language consists of all ω -words that contain only finitely many A.

Exercise 5: Minimal bad prefixes

Provide an example for a regular safety property P_{safe} over some set of atomic propositions AP and an NFA \mathcal{A} for its *minimal* bad prefixes such that

$$L_{\omega}(\mathcal{A}) \neq \left(2^{AP}\right)^{\omega} \setminus P_{\text{safe}}$$

when \mathcal{A} is viewed as a Büchi automaton.

Exercise 6*: Inclusion

In the algorithm for checking regular safety properties we exploited the following equivalence for languages $L_1, L_2 \subseteq \Sigma^*$ for some alphabet Σ .

$$L_1 \subseteq L_2$$
 iff $L_1 \cap \overline{L_2} = \emptyset$

Here, we use $\overline{L_2}$ to denote the complement $\Sigma^* \setminus L_2$.

Show that this equivalence holds.

2 Points

1 Point

1 Point

1 Point