

Delivery: January 30th, 2017 16:15 via the post boxes Discussion: February 1st, 2017

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 13

Exercise 1: Positive normal form

1 Point

Transform the following LTL formula into an equivalent LTL formula in PNF.

$$\neg \Big((\Box a) \rightarrow \big((a \land \neg c) \ \mathsf{U} \ \neg (\bigcirc b) \big) \Big)$$

Exercise 2: From LTL to NBA

3 Points

Provide an NBA for each of the following LTL formulas:

(a)
$$\square(a \vee \neg \bigcirc b)$$

(b)
$$\Diamond a \vee \Box \Diamond (a \leftrightarrow b)$$

(c)
$$\bigcirc (a \lor \Diamond \Box b)$$

You do not have to apply the algorithm from the lecture (which often produces large automata).

Exercise 3: From LTL to GNBA using elementary sets

3 Points

Consider the LTL formula $\varphi := \neg a \cup a$ over the set of atomic propositions $AP = \{a, b\}$. Apply the algorithm from the lecture to obtain a GNBA \mathcal{G}_{φ} whose language is $Words(\varphi)$ by executing the following steps.

- (a) Construct $closure(\varphi)$.
- (b) Construct the elementary sets w.r.t. $closure(\varphi)$.
- (c) Construct the GNBA \mathcal{G}_{φ} .