


Prof. Dr. Andreas Podelski Dr. Matthias Heizmann Christian Schilling Delivery: February 6th, 2017 16:15 via the post boxes Discussion: February 8th, 2017

Tutorial for Cyber-Physical Systems - Discrete Models Exercise Sheet 14

Exercise 1: CTL

2.5+0.5 Points

Consider the following transition system over the set of atomic propositions $\{a, b, c\}$:

Indicate for each of the following CTL formulas the set of states for which the formula is satisfied.

(a) $a \land \exists \bigcirc b$ (c) $\forall (a \lor b)$ (e) $\forall ((\exists \diamondsuit c) \lor (\forall \Box a))$ (b) $\forall \bigcirc \exists \bigcirc c$ (d) $\neg (a \lor \Box b)$ (f) $\forall \Box \forall \diamondsuit b$

Exercise 2: Equivalences CTL and LTL

(a) Consider the LTL formula $\varphi_1 := \Diamond (a \land \bigcirc a)$. Show that the following CTL formulas are not equivalent to φ_1 :

(i) $\psi_1 := \forall \Diamond (a \land \exists \bigcirc a)$ (ii) $\psi_2 := \exists \Diamond (a \land \forall \bigcirc a)$ (iii) $\psi_3 := \exists \Diamond (a \land \exists \bigcirc a)$

Bonus: Find two transition systems which show that φ_1 , ψ_1 , ψ_2 , and ψ_3 are pairwise not equivalent.

- (b) Consider the LTL formula $\varphi_2 := \Diamond \Box a$. Show that the following CTL formulas are not equivalent to φ_2 :
 - (i) $\psi_4 := \forall \Diamond \exists \Box a$ (ii) $\psi_5 := \exists \Diamond \forall \Box a$ (iii) $\psi_6 := \exists \Diamond \exists \Box a$

Bonus: Find two transition systems which show that φ_2 , ψ_4 , ψ_5 , and ψ_6 are pairwise not equivalent.

Hint: To show that two formulas φ and ψ are not equivalent, depict a transition system TS such that $TS \models \varphi$ and $TS \not\models \psi$ (or the other way around).

Exercise 3: Existential Normal Form

Convert the following CTL formulas into existential normal form:

(a) $\forall \bigcirc a$ (b) $\forall \square \forall \Diamond a$ (c) $\forall (a \ U \ b)$

3+1 Points

2 Points