
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann

Preference deadline: May 17, 2018
Discussion: May 28, 2018

Tutorial for Program Verification
Exercise Sheet 5

Exercise 1: Weakest precondition for sequential composition 2 Points
The weakest precondition of the sequential composition is independent of the way we add
parentheses, i.e.,

wp((C1 ; C2) ; C3, φ) ≡ wp(C1 ; (C2 ; C3), φ)

Use the following program and postcondition to exemplarily show this fact, i.e., compute
wp for both interpretations step by step and compare the results.

C1 : if x > 0 then x := 1 else x := 2

C2 : y := 1 φ : x = 3

C3 : x := x+ y

Exercise 2: Recursive equation for loop invariants 2 Points
In this exercise we derive a recursive equation for the loop invariant of a while loop. This
equation might be useful to guess inductive loop invariants.

Consider the following equivalence of commands.

while b do C0 ≡ if b then C0 ; while b do C0 else skip

(a) Use the operational semantics of commands (“ ”) to show that the preceding
equivalence holds, i.e., show that the following equation is valid.

[[while b do C0]] = [[if b then C0 ; while b do C0 else skip]]

(b) Use the weakest precondition wp(·, ·) to state a recursive equation for a loop in-
variant θ of a while loop while b do C0.

Hint : Start computing wp for both sides. Finally, the right-hand side of the
equation should be a first-order logic formula that contains b, θ, and wp(C0, φ) for
some suitable first-order logic formula φ.

1



Exercise 3: Hoare logic derivation – Multiplication 2 Points

(a) Write down a partial correctness specification (i.e., precondition and postcondition)
for a program C that multiplies two integers m and n, where m is nonnegative, and
stores the result in r.

(b) Write down a program C as specified above that only uses addition (but not multi-
plication). Use the command language introduced in the lecture.

Hint : Using an auxiliary variable may be helpful for the next part of the exercise.

(c) Annotate the while loop of your program with a suitable loop invariant and con-
struct a Hoare logic derivation that proves that your program C fulfills your cor-
rectness specification.

Exercise 4: Loop invariants 1 Point
Consider the following program P .

{true}
x := i;
y := j;
while x 6= 0 do {θ} {

x := x− 1
y := y − 1

}
{i = j → y = 0}

(a) Find a suitable loop invariant θ such that true |= wp(P, i = j → y = 0) holds.

(b) Give two examples for a loop invariant θ such that true |= wp(P, i = j → y = 0)
does not hold.

2


