Tutorial for Program Verification

Exercise Sheet 5

Exercise 1: Hoare logic derivation - Multiplication

1 Point
Solve Exercise 3c from the last exercise sheet whose solution has not yet been discussed in the exercise group.

Exercise 2: Hoare logic derivation - Factorial function
2 Points Consider the annotated program Fact.

$$
\begin{aligned}
& \{n \geq 0\} \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{\theta\}\{ \\
& \quad f:=f \cdot i ; \\
& \quad i:=i+1 ; \\
& \} \\
& \{f=\operatorname{fact}(n)\}
\end{aligned}
$$

The term $\operatorname{fact}(n)$ denotes the factorial function applied to n.
In Figure 1 you find a derivation of the given partial correctness specification in the Hoare calculus and the following loop invariant.

$$
\theta:=f=\operatorname{fact}(i-1) \wedge 1 \leq i \wedge i \leq n+1
$$

Collect all side conditions from the strengthening/weakening rule applications (marked with "s/w") and show that they are valid (you can skip trivial proofs). Note that one of the proofs requires a case split.

Exercise 3: Guarded commands

Consider the following modified version of Fact where we added the variable u.

$$
\begin{aligned}
& \{n \geq 0\} \\
& u:=1 ; \\
& f:=1 ; \\
& i:=1 ; \\
& \text { while } i \leq n \text { do }\{\theta\}\{ \\
& \quad f:=f \cdot i ; \\
& \quad i:=i+1 ; \\
& \quad u:=u+1 ; \\
& \} \quad\{f=\operatorname{fact}(n) \wedge u \geq 1\}
\end{aligned}
$$

(a) Transform the program (together with its pre-/postcondition) to a guarded command. Use the old θ from the previous exercise:

$$
f=\operatorname{fact}(i-1) \wedge 1 \leq i \wedge i \leq n+1
$$

(b) Why will a correctness proof using wp of your guarded command fail?
(c) Modify θ above such that it can be used to show correctness of this program.

$$
\begin{align*}
& \frac{\sum_{1=1 \wedge n \geq 0\} f:=1\{f=1 \wedge n \geq 0\}}^{\{n \geq 0\} f:=1\{f=1 \wedge n \geq 0\}}}{} \text { asgn } \quad \text { w } \quad \frac{\{f=1 \wedge 1=1 \wedge n \geq 0\} i:=1\{f=1 \wedge i=1 \wedge n \geq 0\}}{\{f=1 \wedge n>0\} i:=1\{f=1 \wedge i=1 \wedge n>0\}} \text { asgn } \mathrm{s} / \mathrm{w} \\
& \frac{\{n \geq 0\} f:=1\{f=1 \wedge n \geq 0\}}{\underline{\{n \geq 0\} f}:=1 ; i:=1\{f=1 \wedge i=1 \wedge n \geq 0\}} \frac{\{n \geq 0\} \text { Fact }\{f=\text { fact }(n)\}}{\{n=1 \wedge n \geq 0\} i:=1\{f=1 \wedge i=1 \wedge n \geq 0\}} \mathrm{seq} \mathrm{~s} / \mathrm{w} \mathrm{~s} \tag{1}
\end{align*}
$$

Proof tree for (1):

$$
\begin{aligned}
& \text { (2) } \frac{\overline{\{f=\operatorname{fact}(i+1-1) \wedge 1 \leq i+1 \wedge i+1 \leq n+1\} i:=i+1\{\theta\}}}{\{f=\operatorname{fact}(i) \wedge 1 \leq i \wedge i \leq n\} i:=i+1\{\theta\}} \text { seq } \mathrm{s} / \mathrm{w} \\
& \{\theta \wedge i \leq n\} f:=f \cdot i ; i:=i+1 ;\{\theta\} \\
& \{\theta\} \text { while } i \leq n \text { do }\{\theta\}\{f:=f \cdot i ; i:=i+1\}\{\theta \wedge \neg(i \leq n)\} \text { whl } \\
& \{f=1 \wedge i=1 \wedge n \geq 0\} \text { while } i \leq n \text { do }\{\theta\}\{f:=f \cdot i ; i:=i+1\}\{f=\operatorname{fact}(n)\} \mathrm{s} / \mathrm{w}
\end{aligned}
$$

Proof tree for (2):

$$
\frac{\left.\frac{\{f \cdot i=f a c t}{}(i-1) \cdot i \wedge 1 \leq i \wedge i \leq n\right\} f:=f \cdot i\{f=f a c t(i-1) \cdot i \wedge 1 \leq i \wedge i \leq n\}_{\{\theta \wedge i \leq n\} f:=f \cdot i\{f=\operatorname{fact}(i) \wedge 1 \leq i \wedge i \leq n\}}^{\text {asgn }}}{\text { s/w }}
$$

Figure 1: Hoare derivation for Fact function and $\theta \equiv f=f a c t(i-1) \wedge 1 \leq i \wedge i \leq n+1$. Due to space constraints the proof tree is split into three subtrees and we have not substituted θ. On the web page you can find a full picture of the proof tree.

