

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann

Tutorial for Program Verification Exercise Sheet 6

Exercise 1: Hoare logic derivation – **Multiplication** 1 Point Solve Exercise 3c from Sheet 4 whose solution has not yet been discussed in the exercise group.

Exercise 2: Hoare logic derivation – **Factorial function** 2 Points Solve Exercise 2 from the last exercise sheet whose solution has not yet been discussed in the exercise group.

Exercise 3: Properties of post 2 Points 2 Points We say that *post* distributes over the connective \odot w.r.t. the first argument if the following equation holds.

$$post(\phi_1 \odot \phi_2, \rho) = post(\phi_1, \rho) \odot post(\phi_2, \rho)$$

We say that *post* distributes over the connective \odot w.r.t. the second argument if the following equation holds.

$$post(\phi, \rho_1 \odot \rho_2) = post(\phi, \rho_1) \odot post(\phi, \rho_2)$$

- Determine for ⊙ ∈ {∧, ∨, →} if *post* distributes over ⊙ w.r.t. the first argument or w.r.t. the second argument.
- Determine if the equality $post(\neg \phi, \rho) = \neg post(\phi, \rho)$ holds.

Determine if the equality $post(\phi, \neg \rho) = \neg post(\phi, \rho)$ holds.

Give a proof for each positive answer, give a counterexample for each negative answer.

Exercise 4: Program representations

1 Point

Consider again the program from Exercise 4 on Sheet 4 where we encode the postcondition using an **assert** statement and omit the precondition and the loop invariant.

```
\begin{array}{lll} \ell_{0}: & x := i; \\ \ell_{1}: & y := j; \\ \ell_{2}: & \textbf{while } x \neq 0 \ \textbf{do} \ \{ \\ \ell_{3}: & x := x - 1 \\ \ell_{4}: & y := y - 1 \\ \ell_{5}: & \} \\ \ell_{6}: & \textbf{assert}(i = j \rightarrow y = 0) \end{array}
```

(a) State a formal definition of this program in the notation that was introduced in the lecture on Wednesday, June 6, where a program is given as a tuple

$$P = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err}).$$

(b) Draw the corresponding control flow graph.

Exercise 5: Weakest precondition

Let V be a tuple of program variables. Let ϕ be a set of states (i.e., ϕ is a formula whose free variables are in V). Let ρ be a binary relation over program states (i.e., ρ is a formula whose free variables are in $V \cup V'$).

In the lecture we defined the formula $post(\phi, \rho)$ as the image of the set ϕ under the relation ρ .

- (a) Define a function wp such that the formula $wp(\phi, \rho)$ denotes the largest set of states ψ such that $post(\psi, \rho)$ is a subset of ϕ .
- (b) Compute $wp(\phi_i, \rho_i)$ for the following pairs.

$\phi_1 \equiv y \ge 7$	$\rho_1 \equiv x < y \land x' = x \land y' = y$
$\phi_2 \equiv y \ge 7$	$\rho_2 \equiv x' = x + y + 3 \land y' = y$
$\phi_3 \equiv y \ge 7 \land x = 23$	$ \rho_3 \equiv y' = y $

2 Points