Tutorial for Program Verification
 Exercise Sheet 6

Exercise 1: Hoare logic derivation - Multiplication
 1 Point

Solve Exercise 3c from Sheet 4 whose solution has not yet been discussed in the exercise group.

Exercise 2: Hoare logic derivation - Factorial function

2 Points
Solve Exercise 2 from the last exercise sheet whose solution has not yet been discussed in the exercise group.

Exercise 3: Properties of post

2 Points
We say that post distributes over the connective \odot w.r.t. the first argument if the following equation holds.

$$
\operatorname{post}\left(\phi_{1} \odot \phi_{2}, \rho\right)=\operatorname{post}\left(\phi_{1}, \rho\right) \odot \operatorname{post}\left(\phi_{2}, \rho\right)
$$

We say that post distributes over the connective \odot w.r.t. the second argument if the following equation holds.

$$
\operatorname{post}\left(\phi, \rho_{1} \odot \rho_{2}\right)=\operatorname{post}\left(\phi, \rho_{1}\right) \odot \operatorname{post}\left(\phi, \rho_{2}\right)
$$

- Determine for $\odot \in\{\wedge, \vee, \rightarrow\}$ if post distributes over \odot w.r.t. the first argument or w.r.t. the second argument.
- Determine if the equality $\operatorname{post}(\neg \phi, \rho)=\neg \operatorname{post}(\phi, \rho)$ holds.

Determine if the equality $\operatorname{post}(\phi, \neg \rho)=\neg \operatorname{post}(\phi, \rho)$ holds.
Give a proof for each positive answer, give a counterexample for each negative answer.

Exercise 4: Program representations

Consider again the program from Exercise 4 on Sheet 4 where we encode the postcondition using an assert statement and omit the precondition and the loop invariant.

```
\(\ell_{0}: x:=i ;\)
\(\ell_{1}: y:=j ;\)
\(\ell_{2}\) : while \(x \neq 0\) do \(\{\)
\(\ell_{3}: \quad x:=x-1\)
\(\ell_{4}: \quad y:=y-1\)
\(\left.\ell_{5}:\right\}\)
\(\ell_{6}: \operatorname{assert}(i=j \rightarrow y=0)\)
```

(a) State a formal definition of this program in the notation that was introduced in the lecture on Wednesday, June 6, where a program is given as a tuple

$$
P=\left(V, p c, \varphi_{\text {init }}, \mathcal{R}, \varphi_{e r r}\right)
$$

(b) Draw the corresponding control flow graph.

Exercise 5: Weakest precondition

2 Points
Let V be a tuple of program variables. Let ϕ be a set of states (i.e., ϕ is a formula whose free variables are in V). Let ρ be a binary relation over program states (i.e., ρ is a formula whose free variables are in $\left.V \cup V^{\prime}\right)$.
In the lecture we defined the formula $\operatorname{post}(\phi, \rho)$ as the image of the set ϕ under the relation ρ.
(a) Define a function $w p$ such that the formula $w p(\phi, \rho)$ denotes the largest set of states ψ such that $\operatorname{post}(\psi, \rho)$ is a subset of ϕ.
(b) Compute $w p\left(\phi_{i}, \rho_{i}\right)$ for the following pairs.

$$
\begin{array}{ll}
\phi_{1} \equiv y \geq 7 & \rho_{1} \equiv x<y \wedge x^{\prime}=x \wedge y^{\prime}=y \\
\phi_{2} \equiv y \geq 7 & \rho_{2} \equiv x^{\prime}=x+y+3 \wedge y^{\prime}=y \\
\phi_{3} \equiv y \geq 7 \wedge x=23 & \rho_{3} \equiv y^{\prime}=y
\end{array}
$$

