

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann Preference deadline: June 21, 2017 Discussion: June 25, 2017

Tutorial for Program Verification Exercise Sheet 8

Exercise 1: Havoc

1 Point

We define the transition relation for the guarded command **havoc** x as follows.

$$\rho_{\mathbf{havoc}(x)} :\equiv skip(V \setminus \{x\}) \equiv \bigwedge_{y \in V, \, y \neq x} y' = y$$

- (a) Show that $wp(\varphi \wedge x = 0, \rho_{havoc(x)}) \equiv false$ for any formula φ .
- (b) Let $\varphi_{x=0}$ be a formula that contains x = 0 as a subformula. Show that $wp(\varphi_{x=0}, \rho_{\mathbf{havoc}(x)}) \equiv false$ does not hold in general.

Recall that $wp(\varphi, \rho) \equiv \forall V'. \rho \rightarrow \varphi[V'/V].$

Exercise 2: Weakest precondition and strongest postcondition 1 Point Let φ and ψ be arbitrary predicates and ρ be a transition relation. Give a counterexample for each of the following statements if it does not hold.

- (a) $\varphi = wp(\psi, \rho) \iff post(\varphi, \rho) = \psi$
- (b) $\varphi \subseteq wp(\psi, \rho) \iff post(\varphi, \rho) \subseteq \psi$
- (c) $\varphi \supseteq wp(\psi, \rho) \iff post(\varphi, \rho) \supseteq \psi$

Exercise 3: Inductive invariants

Consider the following program from the lecture

 $P = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$

where the tuple of program variables V is (pc, x, y, z), the initial condition φ_{init} is $pc = \ell_1$, the error condition φ_{err} is $pc = \ell_5$, and the set of transition relations \mathcal{R} contains the following transitions.

(11

$$\begin{split} \rho_{1} &= (move(\ell_{1}, \ell_{2}) \land y \geq z \land skip(x, y, z)) \\ \rho_{2} &= (move(\ell_{2}, \ell_{2}) \land x < y \land x' = x + 1 \land skip(y, z)) \\ \rho_{3} &= (move(\ell_{2}, \ell_{3}) \land x \geq y \land skip(x, y, z)) \\ \rho_{4} &= (move(\ell_{3}, \ell_{4}) \land x \geq z \land skip(x, y, z)) \\ \rho_{5} &= (move(\ell_{3}, \ell_{5}) \land x < z \land skip(x, y, z)) \\ \rho_{5} &= (move(\ell_{3}, \ell_{5}) \land x < z \land skip(x, y, z)) \\ \end{split}$$

2 Points

- (a) Is the complement of φ_{err} an inductive invariant? If not, give a counterexample.
- (b) What is the weakest¹ inductive invariant that is contained in the complement of φ_{err} (i.e., disjoint from φ_{err})?
- (c) Describe a (possibly non-terminating) algorithm to construct the weakest inductive invariant that is contained in the complement of φ_{err} (for any program that is safe). *Hint*: Eliminate states that can reach an error state.

¹A formula φ is weaker than a formula ψ if ψ implies φ . An inductive invariant φ is the weakest inductive invariant if φ is implied by all other inductive invariants.