

Prof. Dr. Andreas Podelski Dr. Matthias Heizmann

Tutorial for Program Verification Exercise Sheet 9

Exercise 1: Precondition function

1 Point

We use $pre(\varphi, \rho)$ to denote the predecessor states from a set of states φ under a transition relation ρ . In other words, $pre(\varphi, \rho)$ is the biggest set of states such that after executing ρ we can arrive at a state in φ .

- (a) Write down a formula that describes $pre(\varphi, \rho)$.
- (b) We could alternatively define $pre(\varphi, \rho)$ as follows:

 $\neg wp(\neg \varphi, \rho)$

Substitute the definition of wp and simplify the formula by eliminating negations. You should obtain the same formula as in part (a).

- (c) What is, intuitively speaking, the difference between pre and wp?
- (d) Give formulas $\varphi_1, \varphi_2, \varphi_3, \rho_1, \rho_2, \rho_3$ such that the claims below hold. (We write \subseteq for \implies here.)

$$wp(\varphi_1, \rho_1) \not\subseteq pre(\varphi_1, \rho_1)$$
$$wp(\varphi_2, \rho_2) \not\supseteq pre(\varphi_2, \rho_2)$$
$$wp(\varphi_3, \rho_3) = pre(\varphi_3, \rho_3)$$

Exercise 2: Predicate transformers

We consider two variables x, y over the binary domain $\{0, 1\}$.

(a) The following diagram shows the four possible states on the left and on the right.

x = 0, y = 0 • x = 0, y = 0 x = 0, y = 1 • x = 0, y = 1 x = 1, y = 0 • x = 1, y = 0x = 1, y = 1 • x = 1, y = 1

Draw the transitions that correspond to the following statements. (i) x := 1 (ii) havoc(x) (iii) assume(x = 0) 1 Point

(b) Consider the transition relation ρ that is given by the following diagram.

Find a formula for ρ .

Furthermore, compute the following sets.

(i) $wp(true, \rho)$	(iii) $wp(y=1,\rho)$	(v) $wp(y=0,\rho)$
(ii) $pre(true, \rho)$	(iv) $pre(y=1,\rho)$	(vi) $pre(y=0,\rho)$

Exercise 3: Relational composition

1 Point

Find a formula that denotes the relational composition $\rho_1 \circ \rho_2$ of the two relations denoted by the formulas ρ_1 and ρ_2 . Here ρ_1 and ρ_2 are formulas in the variables $V \cup V'$, where V'consists of the primed versions of the variables in V.

Careful: The algebraic definition may be counterintuitive because one first applies ρ_2 :

 $\rho_1 \circ \rho_2 = \{ (s_1, s_3) \mid \exists s_2. \ (s_1, s_2) \in \rho_2 \land (s_2, s_3) \in \rho_1 \}$