Tutorial for Program Verification Exercise Sheet 9

Exercise 1: Precondition function

1 Point
We use $\operatorname{pre}(\varphi, \rho)$ to denote the predecessor states from a set of states φ under a transition relation ρ. In other words, $\operatorname{pre}(\varphi, \rho)$ is the biggest set of states such that after executing ρ we can arrive at a state in φ.
(a) Write down a formula that describes $\operatorname{pre}(\varphi, \rho)$.
(b) We could alternatively define $\operatorname{pre}(\varphi, \rho)$ as follows:

$$
\neg w p(\neg \varphi, \rho)
$$

Substitute the definition of $w p$ and simplify the formula by eliminating negations. You should obtain the same formula as in part (a).
(c) What is, intuitively speaking, the difference between pre and wp?
(d) Give formulas $\varphi_{1}, \varphi_{2}, \varphi_{3}, \rho_{1}, \rho_{2}, \rho_{3}$ such that the claims below hold. (We write \subseteq for \Longrightarrow here.)

$$
\begin{aligned}
& w p\left(\varphi_{1}, \rho_{1}\right) \nsubseteq \operatorname{pre}\left(\varphi_{1}, \rho_{1}\right) \\
& w p\left(\varphi_{2}, \rho_{2}\right) \nsupseteq \operatorname{pre}\left(\varphi_{2}, \rho_{2}\right) \\
& w p\left(\varphi_{3}, \rho_{3}\right)=\operatorname{pre}\left(\varphi_{3}, \rho_{3}\right)
\end{aligned}
$$

Exercise 2: Predicate transformers

1 Point
We consider two variables x, y over the binary domain $\{0,1\}$.
(a) The following diagram shows the four possible states on the left and on the right.

$$
\begin{array}{ll}
x=0, y=0 \bullet & \bullet x=0, y=0 \\
x=0, y=1 \bullet & \text { • } x=0, y=1 \\
x=1, y=0 \bullet & \text { • } x=1, y=0 \\
x=1, y=1 \bullet & \text { • } x=1, y=1
\end{array}
$$

Draw the transitions that correspond to the following statements.
(i) $x:=1$
(ii) $\operatorname{havoc}(x)$
(iii) assume $(x=0)$
(b) Consider the transition relation ρ that is given by the following diagram.

$$
\begin{aligned}
& x=0, y=0 \bullet \longrightarrow \bullet x=0, y=0 \\
& \begin{array}{l}
x=0, y=1 \bullet x=0, y=1 \\
x=1, y=0 \bullet x=1, y=0
\end{array} \\
& x=1, y=1 \\
& \text { - } x=1, y=1
\end{aligned}
$$

Find a formula for ρ.
Furthermore, compute the following sets.
(i) $w p($ true,$\rho)$
(iii) $w p(y=1, \rho)$
(v) $w p(y=0, \rho)$
(ii) $\operatorname{pre}($ true,$\rho)$
(iv) $\operatorname{pre}(y=1, \rho)$
(vi) $\operatorname{pre}(y=0, \rho)$

Exercise 3: Relational composition

1 Point
Find a formula that denotes the relational composition $\rho_{1} \circ \rho_{2}$ of the two relations denoted by the formulas ρ_{1} and ρ_{2}. Here ρ_{1} and ρ_{2} are formulas in the variables $V \cup V^{\prime}$, where V^{\prime} consists of the primed versions of the variables in V.
Careful: The algebraic definition may be counterintuitive because one first applies ρ_{2} :

$$
\rho_{1} \circ \rho_{2}=\left\{\left(s_{1}, s_{3}\right) \mid \exists s_{2} .\left(s_{1}, s_{2}\right) \in \rho_{2} \wedge\left(s_{2}, s_{3}\right) \in \rho_{1}\right\}
$$

