
On the Proxy Identity Crisis

Matthias Keil Peter Thiemann

University of Freiburg, Germany

{keilr,thiemann}@informatik.uni-freiburg.de

1. Introduction

A proxy, or wrapper, is an object that mediates access to an

arbitrary target object. Proxies are widely used to perform

resource management, access remote objects, impose access

control [1, 5], restrict the functionality of an object [6], or

to enhance the interface of an object. Ideally, a proxy is not

distinguishable from other objects so that running a program

with an interposed proxy should lead to the same outcome as

running the program with the target object, unless the proxy

imposes restrictions.

Proxies introduce a subtle problem. Because a target ob-

ject may have any number of proxy objects, which are all dif-

ferent from the target, a single target object may obtain mul-

tiple identities—it suffers from schizophrenia! Even worse,

it turns out that there is no single cure for this schizophrenia

because the desired behavior depends on the use case.

Unfortunately, current proxy implementations are com-

mitted to particular use cases, which makes it hard to adapt

them to uses with different requirements. We discuss two

such use cases in the context of the JavaScript proxy API

[1], identify its shortcomings, and propose a solution.

1.1 JavaScript Proxies

The JavaScript proxy API [1] provides a proxy constructor

that takes the proxy’s target object and a handler object:

1 var p = new Proxy (t a r g e t , h a n d l e r) ;

The handler object provides optional trap methods that

are invoked when operations are applied to the proxy.

For example, a property get like p.foo invokes the trap

handler.get(target,’foo’,p) if that trap is present.

Untrapped operations are forwarded to the target object.

The JavaScript proxy API treats proxies as opaque: each

proxy object has its own identity different from all other

(proxy) objects and this difference is observable with the

JavaScript equality operators == and ===. When applied to

two objects, both operators compare the object references.1

The use of equality has one consequence: comparing distinct

proxies returns false even though the underlying target is the

same. Similarly, an unwrapped target object is not equal to

any of its proxies.

1 If one argument has a primitive type, == attempts to convert the other

argument to the same primitive type, whereas === returns false if the types

are different. If both arguments are objects, then both operators do the same.

1.2 Use Case: Access Control

JavaScript proxies implement access control wrappers like

revocable references and membranes in a library [1]. The

idea of a revocable reference is to only ever pass a proxy

to an untrusted piece of code, e.g., a mashup. Once the host

application deems that the mashup has finished its job, it re-

vokes the reference which detaches the proxy from its tar-

get. Membranes extend this method recursively to all objects

reachable from the object passed to a mashup. Opaque prox-

ies are required for implementing this library.

The JavaScript proxy API is tailored to uses where access

is strictly compartmentalized. The host application only sees

the original objects whereas the mashup only sees proxies.

Furthermore, the implementation of revocable references

and membranes ensures that there is at most one proxy for

each original object. For this reason, each compartment has

a consistent view where object references are unique.

1.3 Use Case: Contracts

Proxies implement contracts in Racket [6] and in JavaScript

[3, 5]. Contracts impose restrictions that the programmer re-

gards as preconditions for the correct execution of a pro-

gram. For example, a contract may require a method to be

called with a particular type or an object property to always

contain positive numbers.

During maintenance, the programmer may add contracts

to a program as understanding improves. Clearly, the addi-

tion of a new contract must not change a program execution

that respects the contract already. In this scenario, the pro-

gram executes in a mix of original objects and proxy objects.

Furthermore, there may be more than one proxy (implement-

ing different contracts) for the same target. If introducing

proxies affected the object identity, then some true compar-

isons would flip to false, thus changing the semantics.

Consequently, the Racket implementation provides trans-

parent proxies [6], which are indistinguishable from their

target object, recursively.

1.4 Assessment

Neither the opaque nor the transparent proxy implementa-

tion can be labeled as right or wrong without further qualifi-

cation. Each is appropriate for a particular use case and leads

to undesirable behavior in another use case.

It is also clear that the behavior of equality is not some-

thing the should be left to the whim of the programmer. For

example, equality on objects should be an equivalence rela-

tion, which means that the equality operations == and ===

must not be trapped [2].

Thus, the current state of affairs in JavaScript is fully

justified, but it is not well suited to implement contract

systems. Hence, we explore some alternative designs that

would suit both use cases.

2. Alternative Designs

Proxy-aware equality One way to obtain transparent prox-

ies with an implementation of opaque proxies is to provide

proxy-aware equality functions like Proxy.isEqual() and

Proxy.isIdentical() to replace all uses of == and ===,

respectively, in an application program. This approach pre-

serves the previous behavior and retains the possibility to

distinguish proxies from target objects in library code im-

plementing proxy abstractions. However, it would require

the application code to be transformed (at run time to sup-

port eval), which is not feasible in an application like access

control [5] that must work with unmodified foreign code.

Transparent Proxies Making proxies generally transpar-

ent makes it impossible to test whether a reference is a proxy

or an original object. However, there are abstractions that re-

quire such a test. For example, our implementation of access

permissions [5] extracts the current permission from a proxy

to construct a new proxy with an updated permission. This

improves the efficiency of the implementation, which would

otherwise generate long chains of proxy objects.

Thus, for implementing proxy abstractions it must be

possible to break the transparency.

More equality operators Another possible solution would

be to reinterpret the JavaScript equality operators == and ===

as proxy-transparent and introduce new variants, say, :==:

and :===: for their opaque cousins. The former operators

are supposed to be used in application code whereas the

implementation of proxy abstractions could make use of the

opaque operators where needed.

No code transformation is required with this approach.

However, it is not clear how to ensure that application code

does not use the opaque operators. It is not even clear if

it should not use them. While proxy abstractions can be

implemented, the distinction between application and library

seems too rigid. Given both operations, application code can

test if one object is a proxy for another:

1 var i s P r o x y = ((objA==objB) != (objA : = = : objB)) ;

Trapping the equality operation We already discussed

that trapping the equality operation is not appropriate. How-

ever, there is a twist that enables modifying the equality

without destroying its properties. Essentially, the handler is

extended with a boolean trap:

isTransparent : function () -> boolean

If the handler’s trap returns false or if it is not present, the as-

sociated proxy behaves opaquely, otherwise it behaves trans-

parently. The implementation is an extension of the equal-

ity comparison in the VM. Before testing reference identity

as the last step in a comparison of two objects, the equal-

ity comparison calls a new internal GetEqualityObject

method. For a standard object, this method returns its re-

ceiver. For a proxy object, if is isTransparent() on the

handler returns false, then GetEqualityObject returns the

reference to the current object. Otherwise, it recursively in-

vokes GetEqualityObject on the proxy’s target. For con-

sistency, the GetEqualityObject method also needs to be

called in other computations that depend on object iden-

tity, for instance the WeakMap abstraction provided by some

JavaScript implementations.

This design enables both scenarios described in Sec-

tions 1.2 and 1.3 by configuring the handler appropriately.

It also guarantees that equality is an equivalence relation in

application code that does not have access to the handlers.

To implement proxy-based abstractions, it may be necessary

to temporarily make proxies opaque. But opaqueness can be

obtained by reconfiguring the handler in the library code,

analogous to the implementation of revocable references.

To maintain consistency at the application level, it may be

necessary to restrict modifications to this configuration to a

certain scope analogously to dynamic variables [4].

3. Conclusion

We have shown that neither the transparent nor the opaque

implementation of proxies is appropriate for all use cases.

We discuss several amendments and propose a flexible solu-

tion that enables applications requiring transparence as well

as opacity. We are currently implementing this solution in a

JavaScript VM and expect to report results soon.

References

[1] T. V. Cutsem and M. S. Miller. Proxies: design principles for

robust object-oriented intercession APIs. In DLS, pages 59–72.

ACM, 2010.

[2] T. V. Cutsem and M. S. Miller. Trustworthy proxies - virtualiz-

ing objects with invariants. In ECOOP, volume 7920 of LNCS,

pages 154–178. Springer, 2013.

[3] T. Disney. Contracts for JavaScript and CoffeeScript, 2011.

[4] D. R. Hanson and T. A. Proebsting. Dynamic variables. In

PLDI, pages 264–273. ACM, 2001. ISBN 1-58113-414-2.

[5] M. Keil and P. Thiemann. Efficient dynamic access analysis

using JavaScript proxies. In DLS’13, pages 49–60. ACM, 2013.

[6] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and

M. Flatt. Chaperones and impersonators: run-time support for

reasonable interposition. In OOPSLA, pages 943–962. ACM,

2012.

