
Type-based Dependency Analysis for JavaScript

Technical Report

Matthias Keil Peter Thiemann

Institute for Computer Science

University of Freiburg

Freiburg, Germany

{keilr,thiemann}@informatik.uni-freiburg.de

Abstract

Dependency analysis is a program analysis that determines

potential data flow between program points. While it is not a

security analysis per se, it is a viable basis for investigating

data integrity, for ensuring confidentiality, and for guaran-

teeing sanitization. A noninterference property can be stated

and proved for the dependency analysis.

We have designed and implemented a dependency analy-

sis for JavaScript. We formalize this analysis as an abstrac-

tion of a tainting semantics. We prove the correctness of the

tainting semantics, the soundness of the abstraction, a non-

interference property, and the termination of the analysis.

Categories and Subject Descriptors F.3.2 [LOGICS AND

MEANINGS OF PROGRAMS]: Semantics of Program-

ming Languages—Program analysis; D.3.1 [PROGRAM-

MING LANGUAGES]: Formal Definitions and Theory—

Semantics ; D.4.6 [OPERATING SYSTEMS]: Security and

Protection—Information flow controls

General Terms Security

Keywords Type-based Analysis, Dependency, JavaScript

1. Introduction

Security Engineering is one of the challenges of modern

software development. The connected world we live in con-

sists of interacting entities that process distributed private

data. This data has to be protected against illegal usage, tam-

pering, and theft.

Web applications are one popular example of such inter-

acting entities. They run in the web browser and consist of

program fragments from different sources (e.g., mashups).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’13, June 20, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2144-0/13/06. . . $15.00

Such fragments should not be entrusted with sensitive infor-

mation. However, if a fragment’s input data can be shown

not to depend on confidential data, then it cannot divulge

this data or tamper with it.

A Web application may also be vulnerable to an injection

attack. Such an attack arises when data is stored in a database

or in the DOM without proper escaping. If an analysis can

determine that the input to the database never depends di-

rectly on a data source (like an HTML input field), but rather

is always filtered by a suitable sanitizer, then many kinds of

injection attacks can be avoided.

Dependency analysis is a program analysis that can help

in both situations, because it determines potential data flow

between program points. Intuitively, there is a dependency

between the value in variable x and the value of an expres-

sion e[x] containing the variable if substituting different ex-

pressions e′ for x may change the value of e[e′]. In our ap-

plication we label data sources (e.g., as confidential) in a

JavaScript program and are interested in identifying the po-

tential sinks reachable from these data sources. For saniti-

zation, we instrument sanitizers with a relabeling operation

that modifies the dependency on the original data source to a

sanitized dependency. We consider a data sink safe, if it only

depends on data that passed through a sanitizer. Other uses

of dependency information for optimization or paralleliza-

tion are possible, but not considered in this work.

We designed and implemented our dependency anal-

ysis as an extension of TAJS [15], a type analyzer for

JavaScript. The implementation allows us to label data

sources with a traceℓ marker and to indicate relabelings

with an untrace(A→֒A′) marker. The analysis performs an

abstract interpretation to approximate the flow of the mark-

ers throughout the program. The marker is part of the ana-

lyzed type and propagated to all program points that depend

on a marked value.

Part of our work consists in establishing the formal un-

derpinnings of the implemented analysis. Thus, we outline

a correctness proof for the dependency part of the analysis.

For conducting the proofs, we have simplified the domains

with respect to the implementation to avoid an overly com-

plex formal system. To this end, we formalize the dynamic

semantics of a JavaScript core language, extend that with

marker propagation, and then formalize the abstract inter-

pretation of this extended semantics. Both, concrete and ab-

stract semantics are given as big-step semantics. We prove

sound marker propagation, sound approximation of the dy-

namic semantics by its abstract counterpart, noninterference,

and the termination of the analysis.

Contributions

• Design and implementation of a type-based dependency

analysis based on TAJS [15].

• Formalization of the analysis.

• Proofs of correctness and termination.

• Extension of the analysis for sanitization (Section 7).

• A noninterference theorem (Section 8).

Overview Section 2 considers some example scenarios of

our implemented system. Section 3 formalizes a core lan-

guage, its dynamic semantics, and defines noninterference

semantically. Section 4 extends this semantics with tainting.

Section 5 defines the corresponding abstraction, Section 6

gives some example applications, and Section 7 defines the

extension for sanitization. Section 8 contains our theorems

of soundness, noninterference, and termination. Section 9

briefly describes the implementation. Related work is dis-

cussed in Section 10 followed by a conclusion.

The proofs of soundness, noninterference, and termina-

tion are shown in appendix A, B, C, and D.

2. Application Scenario

Web developers rely on third-party libraries for calendars,

maps, social networks, and so on. To create a trustworthy

application, they should ensure that these libraries do not

leak sensitive information of their users.

One way to avoid such leaks is to detect information flow

from confidential data sources to untrusted sinks by program

analysis and take measures to avoid this flow. Sometimes,

this approach is too restrictive, because the data arriving

at the sink has been sanitized on the way from the source.

Sanitization can take many forms: data may have been en-

crypted or a username/password combination may have been

reduced to a boolean. In such cases, the resulting data still

depends on the confidential source, but it can be safely de-

classified and passed on to an untrusted sink.

An analogous scenario is the avoidance of injection at-

tacks where direct dependencies of database queries or

DOM contents from input fields in a Web form should be

avoided. However, an indirect dependency via a sanitizer

that, in this case, escapes the values suitably is acceptable.

Our dependency analysis addresses both scenarios as il-

lustrated with the following examples.

1 var u s e r H a n d l e r = f u n c t i o n (u i d) {
2 var u s e r D a t a = {name : ’ ’} ;
3 var onSucces s = f u n c t i o n (r e s p o n s e) {
4 u s e r D a t a = r e s p o n s e ;
5 } ;
6

7 i f (Cookie . i s s e t (u i d)) {
8 Cookie . r e q u e s t (uid , onSucces s) ;
9 } e l s e {

10 Ajax . r e q u e s t (’ h t t p :\\ example . org ’ , {
11 c o n t e n t : u i d
12 } , onSucces s) ;
13 }
14

15 re turn {
16 getName : f u n c t i o n () {
17 re turn u s e r D a t a . name ;
18 }
19 }
20 } ;
21 var name1 = u s e r H a n d l e r (t r a c e (” u id1 ”)) . getName () ;
22 var name2 = u s e r H a n d l e r (t r a c e (” u id2 ”)) . getName () ;

Figure 1. Loading sensitive data.

2.1 Cookies

A web developer might want to ensure that the code does not

read sensitive data from cookies and sends it to the net. Tech-

nically, it means that data that is passed to network send op-

erations must not depend on document.cookie. This dependency

can be checked by our analysis.

To label data sources, our implementation reads a config-

uration file with a list of JavaScript objects that are labeled

with a dependency mark before starting the analysis. Any

predefined value or function can be marked in this way. For

this example, the analyzer is to label document.cookie with t0.

Values that are written to a cookie are labeled by wrap-

ping them in a trace expression. The analysis determines that

values returned from cookies are influenced by document.cookie.

Furthermore, after writing a marked value to a cookie, each

subsequent read operation returns a value that depends on it.

The following code snippet uses a standard library for

reading and writing cookies. The comments show the ana-

lyzed dependencies of the respective values.

1 var v a l 1 = r e a d C o o k i e (’ t e s t ’) ; // d(val1)={t0}
2 var v a l 2 = t r a c e (4 7 1 1) ; // d(val2)={t1}
3 w r i t e C o o k i e (’ t e s t ’ , v a l 2) ;
4 var v a l 3 = r e a d C o o k i e (’ t e s t ’) ; // d(val3)={t0,t1}

Thus, the read value in val1 is influenced by document.cookie.

The value in val2 is labeled by a fresh mark t1. Later, this

value is written to the cookie. Hence, the result val3 of the

last read operation is influenced by document.cookie and val2.

2.2 Application: Sensitive Data

The next example is to illustrate the underpinnings of our

analysis and to point out differences to other techniques.

Figure 1 shows a code fragment to request the user name

corresponding to a user id. This data is either read from a

cookie or obtained by an Ajax request.

The function userHandler returns an interface to a user’s

personal data. The implementation abstracts from the data

source by using a callback function onSuccess to handle the

1 l o a d F o r e i g n C o d e = t r a c e (f u n c t i o n () {
2 Array . p r o t o t y p e . f o r e a c h = f u n c t i o n (c a l l b a c k) {
3 f o r (var k = 0 ; k < t h i s . l e n g t h ; k ++) {
4 c a l l b a c k (k , t h i s [k]) ;
5 }
6 } ;
7 }) ;
8 l o a d F o r e i g n C o d e () ;
9 // [..]

10 var a r r a y = new Array (4 7 1 1 , 4 7 1 2) ;
11 a r r a y . f o r e a c h (f u n c t i o n (k , v) {
12 r e s u l t = k + v ;
13 }) ;

Figure 2. Using foreign Code.

results. The code ignores the problem that userData may not be

valid before completion of the Ajax request.

To detect all values depending on user information, a

developer would mark the id. This mark should propagate to

values returned from Cookie. request () and Ajax. request () . Because

we are interested in values depending on Cookie. request () and

Ajax. request () the interfaces also get marked.

The conditional in line 7 depends on Cookie. isset (uid) and

thus on uid and on the cookie interface. The value in userData

(line 4) depends on uid, on the cookie interface, and on

Cookie. isset (uid) from the Ajax interface. The result name1 de-

pends on userData .name and therefore on the user id, the cookie

interface, and potentially on the Ajax interface.

Standard security analyses label values with marks drawn

from a security lattice, often just Low and High. If both

sources, the cookie interface and the Ajax interface, are

labeled with the same mark, there is no way to distinguish

these sources. Dependencies allow us a to formulate security

properties on a fine level of granularity that distinguishes

different sources without changing the underlying lattice.

Second, our analysis is flow-sensitive. Dependencies are

bound to values instead of variable names or parameters. A

variable may containt different values depending on differ-

ent sources during evaluation. In addition, the underlying

TAJS implementation already handles aliasing and polyvari-

ant analysis in a satisfactory way.

In the example, the values in name1 and name2 result from

the same function but may depend on different sources.

The flow-sensitive model retains the independence of the

value in name1 and trace (”uid2”). Section 6.1 discusses the actual

outcome of the analysis.

2.3 Application: Foreign Code

The second scenario (Figure 2) illustrates one way a library

can extend existing functionality. This example extends the

prototype of Array by a foreach function. Later on, this function

is used to iterate over elements.

The goal here is to protect code from being compromised

by the libraries used. The function loadForeignCode encapsulates

foreign code and is labeled as a source. In consequence, all

values created or modified by calling loadForeignCode depend

on this function and contain its mark. Because the function

1 $ = f u n c t i o n (i d) {
2 re turn t r a c e (document . ge tE lemen tById (i d) . va lue , ”#DOM”) ;
3 }
4 f u n c t i o n s a n i t i z e r (v a l u e) {
5 /∗ c l e a n up v a l u e . . . ∗ /
6 re turn untrace (va lue , ”#DOM”) ;
7 }
8 // [...]
9 var i n p u t = $ (” t e x t ”) ;

10 var s e c u r e I n p u t = s a n i t i z e r (i n p u t) ;
11 consumer (s e c u r e I n p u t) ;

Figure 3. Analyzing sanitization.

in the foreach property gets marked, the values in result also

get marked. Therefore, result may be influenced by loading

foreign code. See Section 6.2 for the results of the analysis.

2.4 Application: Sanitization

Noninterference is not the only interesting property that can

be investigated with the dependency analyzer. To avoid in-

jection attacks, programmers should ensure that only es-

caped values occur in a database query or become part of

an HTML page. Also, a dependency on a secret data source

may be acceptable if the data is encrypted before being pub-

lished. These examples illustrate the general idea of sanitiza-

tion where a suitable function needs to be interposed in the

dataflow between certain sources and sinks.

The concrete example in Figure 3 applies our analysis to

the problem. The input is labeled with mark #DOM (line 2).

The function in line 4 performs some (unspecified) sanitiza-

tion and finally applies the untrace function to mark the de-

pendency on the marks identified with #DOM as a sanitized,

safe dependency. The argument of the consumer can now

be checked for dependencies on unsanitized values. In the

example code, the analysis determines that the argument de-

pends on the DOM, but that the dependency is sanitized.

Changing line 10 as indicated below leaves the argument

of the consumer with a mixture of sanitized and unsanitized

dependencies. This mixture could be flagged as an error.

var s e c u r e I n p u t =
i k n o w w h a t i d o ? s a n i t i z e r (i n p u t) : i n p u t ;

3. Formalization

This section presents the JavaScript core calculus λJ along

with a semantic definition of independence.

3.1 Syntax of λJ

λJ is inspired by JavaScript core calculi from the literature

[11, 14]. A λJ expression (Figure 4) is either a constant c (a

boolean, a number, a string, undefined, or null), a variable

x, a lambda expression, an application, a primitive operation,

a conditional, an object creation, a property reference, a

property assignment, or a trace expression.

The trace expression is novel to our calculus. It creates

marked values that can be tracked by our dependency analy-

sis. The expression newℓ e creates an object whose prototype

e ::= c | x | λℓx.e | e(e) | op(e, e)
| if (e) e, e | newℓ e | e[e] | e[e] = e | traceℓ(e)

Location ∋ ξℓ

Value ∋ v ::= c | ξℓ

Prototype ∋ p ::= v
Closure ∋ f ::= ∅ | 〈ρ, λℓx.e〉
Object ∋ o ::= ∅ | o[str 7→ v]
Storable ∋ s ::= 〈o, f, p〉
Environment ∋ ρ ::= ∅ | ρ[x 7→ v]
Heap ∋ H ::= ∅ | H[ξℓ 7→ s]

Figure 4. Syntax and semantic domains of λJ .

〈o, f, p〉(str) ::=



















v, o = o′[str → v]

o′(str), o = o′[str′ → v]

H(ξℓ)(str), o = ∅ ∧ p = ξℓ

undefined, o = ∅ ∧ p = c

〈o, f, p〉[str 7→ v] ::= 〈o[str 7→ v], f, p〉
〈o, f, p〉f ::= f
H[ξℓ, str 7→ v] ::= H[ξℓ 7→ H(ξℓ)[str 7→ v]]
H[ξℓ 7→ ∅] ::= H[ξℓ 7→ 〈∅, ∅,null〉]
H[ξℓ 7→ o] ::= H[ξℓ 7→ 〈o, ∅,null〉]
H[ξℓ 7→ f] ::= H[ξℓ 7→ 〈∅, f,null〉]
H[ξℓ 7→ p] ::= H[ξℓ 7→ 〈∅, ∅, p〉]

Figure 5. Abbreviations.

is the result of e. The lambda expression, the new expression,

and the trace expression carry a unique mark ℓ.

3.2 Semantic domains

Figure 4 also defines the semantic domains of λJ . A heap

maps a location ξℓ to a storable s, which is a triple consist-

ing of an object o, potentially a function closure f (only for

function objects), and a value p, which serves as the pro-

totype. The superscript ℓ refers the expression causing the

allocation. An object o maps a string to a value. A closure

consists of an environment ρ and an expression e. The envi-

ronment ρ maps a variable to a value v, which may be a base

type constant or a location.

Program execution is modeled by a big-step evaluation

judgment of the form H, ρ ⊢ e ⇓ H′ | v. The evaluation

of expression e in an initial heap H and environment ρ
results in the final heap H′ and the value v. We omit its

standard definition for space reasons, but show excerpts of

an augmented semantics in Section 4.

Figure 5 introduces some abbreviated notation. A prop-

erty lookup or a property update on a storable s = 〈o, f, p〉 is

relayed to the underlying object. The property access s(str)
returns undefined by default if the accessed string is not de-

fined in o and the prototype of s is not a location ξℓ. We write

sf for the closure in s. The notation H[ξℓ, str 7→ v] updates a

property of storable H(ξℓ), H[ξℓ 7→ o] initializes an object,

and H[ξℓ 7→ f] defines a function.

3.3 Independence

The traceℓ expression serves to mark a program point as a

source of sensitive data. An expression e is independent from

that source if the value of the traceℓ expression does not

influence the final result of e. The first definition formalizes

replacing the argument of a traceℓ expression.

Definition 1. The substitution e[ℓ 7→ ẽ] of ℓ in e by ẽ is

defined as the homomorphic extension of

traceℓ(e′)[ℓ 7→ ẽ] ≡ traceℓ(ẽ) (1)

Definition 2 (incomplete first attempt). The expression e
is independent from ℓ iff all possible substitutions of ℓ are

unobservable.

∀e1, e2 : H, ρ ⊢ e[ℓ 7→ e1] ⇓ H1 | v

↔ H, ρ ⊢ e[ℓ 7→ e2] ⇓ H2 | v
(2)

This definition covers both, the terminating and the non-

terminating cases. Furthermore, we consider direct depen-

dencies, indirect dependencies, and transitive dependencies,

similar to the behavior described by Denning [8, 9]. In Sec-

tion 8, we complete this definition to make it amenable to

proof.

4. Dependency Tracking Semantics

To attach marker propagation for upcoming values we apply

definition 2 to the λJ calculus. The later on derived abstract

interpretation is formalized on this extended calculus.

This section extends the semantics of λJ with mark prop-

agation. The resulting calculus λD
J only provides a baseline

calculus for subsequent static analysis. λD
J is specifically not

meant to perform any kind of dynamic analysis, where the

presence or absence of a mark in a value guarantees some

dependency related property.

The calculus extends Value to Tainted Value ∋ ω ::=
v : κ where κ ::= ∅ | ℓ | κ • κ is a dependency annotation.

Tainted Value replaces Value in objects and environments.

The operation • joins two dependencies. If ω = v : κv then

write ω • κ for v : κv • κ to apply a dependency annotation

to a value.

The big-step evaluation judgment H, ρ, κ ⊢ e ⇓ H′ | ω
for λD

J extends the one for λJ by a new component κ which

tracks the context dependency for expression e. Figure 6

contains its defining inference rules.

The evaluation rules (DT-CONST), (DT-VAR), and (DT-

ABS) are trivial. Their return values depend on the context.

(DT-OP) calculates the result on the value part and com-

bines the dependencies of the involved values. ⇓v
op stands for

the application of operator op. The rule (DT-NEW) binds the

(DT-CONST)

H, ρ, κ ⊢ c ⇓ H | c : κ

(DT-VAR)

H, ρ, κ ⊢ x ⇓ H | ρ(x) • κ

(DT-ABS)

ξℓ /∈ dom(H)

H, ρ, κ ⊢ λℓx.e ⇓ H[ξℓ 7→ 〈ρ, λℓx.e〉] | ξℓ : κ

(DT-OP)

H, ρ, κ ⊢ e0 ⇓ H′ | v0 : κ0

H′, ρ, κ ⊢ e1 ⇓ H′′ | v1 : κ1

vop = ⇓v
op (v0, v1)

H, ρ, κ ⊢ op(e0, e1) ⇓ H′′ | vop : κ0 • κ1

(DT-NEW)

H, ρ, κ ⊢ e ⇓ H′ | v : κv ξℓ /∈ dom(H)

H, ρ, κ ⊢ newℓ e ⇓ H′[ξℓ 7→ v] | ξℓ : κv

(DT-APP)

H, ρ, κ ⊢ e0 ⇓ H′ | ξℓ : κ0

〈o, 〈ρ̇, λℓx.e〉, p〉 = H′(ξℓ)
H′, ρ, κ ⊢ e1 ⇓ H′′ | v1 : κ1

H′′, ρ̇[x 7→ v1 : κ1], κ • κ0 ⊢ e ⇓ H′′′ | v : κv

H, ρ, κ ⊢ e0(e1) ⇓ H′′′ | v : κv

(DT-IFTRUE)

H, ρ, κ ⊢ e0 ⇓ H′ | v0 : κ0

v0 = true H′, ρ, κ • κ0 ⊢ e1 ⇓ H′′
1 | v1 : κ1

H, ρ, κ ⊢ if (e0) e1, e2 ⇓ H′′
1 | v1 : κ1

(DT-IFFALSE)

H, ρ, κ ⊢ e0 ⇓ H′ | v0 : κ0

v0 6= true H′, ρ, κ • κ0 ⊢ e2 ⇓ H′′
2 | v2 : κ2

H, ρ, κ ⊢ if (e0) e1, e2 ⇓ H′′
2 | v2 : κ2

(DT-GET)

H, ρ, κ ⊢ e0 ⇓ H′ | ξℓ : κξℓ

H′, ρ, κ ⊢ e1 ⇓ H′′ | str : κstr

H, ρ, κ ⊢ e0[e1] ⇓ H′′ | H′′(ξℓ)(str) • κξℓ • κstr

(DT-PUT)

H, ρ, κ ⊢ e0 ⇓ H′ | ξℓ : κξℓ

H′, ρ, κ ⊢ e1 ⇓ H′′ | str : κstr

H′′, ρ, κ ⊢ e2 ⇓ H′′′ | v : κv

H′′′′ = H′′′[ξℓ, str 7→ v : κv • κξℓ • κstr]

H, ρ, κ ⊢ e0[e1] = e2 ⇓ H′′′′ | v : κv

(DT-TRACE)

H, ρ, κ • ℓ ⊢ e ⇓ H′ | v : κv

H, ρ, κ ⊢ traceℓ (e) ⇓ H′ | v : κv

Figure 6. Inference rules of λD
J .

Undefined ::= ℘({undefined})
Null ::= ℘({null})
Bool ::= ℘({true, false})
Num ::= NUM⊤

⊥

String ::= STRING⊤
⊥

Lattice Value ∋ L ::= Undefined × Null ×
Bool × Num × String

Figure 7. Base Type Value Lattice.

Label ∋ Ξ ::= {ℓ . . . }
Abstract Closure ∋ Λℓ ::= 〈σ, λℓx.e〉
Abstract Object ∋ ∆ ::= ∅ | ∆[L 7→ ϑ]
Abstract Value ∋ ϑ ::= 〈L,Ξ,D〉
Abstract Storable ∋ θ ::= 〈∆,Λℓ,Ξ〉
FunctionStore ∋ F ::= ∅ | F [ℓ 7→ 〈Γ, ϑ,Γ, ϑ〉]
Scope ∋ σ ::= ∅ | σ[x 7→ ϑ]
ObjectStore ∋ Σ ::= ∅ | Σ[ℓ 7→ θ]
State ∋ Γ ::= 〈Σ,D〉
Dependency ∋ D ::= ∅ | ℓ | D ⊔ D

Figure 8. Abstract Semantic Domains.

dependency of the evaluated prototype to the returned loca-

tion. During (DT-APP) the dependency of the value refer-

encing the function is bound to the sub-context. In a similar

way (DT-IFTRUE) and (DT-IFFALSE) bind the dependency

of the condition to the sub-context. The rule (DT-GET) com-

bines the dependencies of heap location and property ref-

erence to the returned value. The rule (DT-PUT) combines

these dependencies to the assigned value because the evalu-

ated location and property references affect the write opera-

tion and further the value which is accessible at this location.

The trace expression traceℓ (e) (DT-TRACE) adds the

ℓ annotation to the context of expression e. This addition

causes all values created or modified in e to be marked with ℓ
(e.g. to detect side effects) as stated by the following context

dependency lemma.

Lemma 1. H, ρ, κ ⊢ e ⇓ H′ | v : κv implies that κ ⊆ κv .

The proof is by induction on the relation ⇓ (Section A).

5. Abstract Analysis

The analysis is an abstraction of the λD
J calculus. Its basis

is the lattice for base type values (Figure 7), which is a

simplified adaptation of the lattice of TAJS [15]. NUM is

the set of floating point numbers, STRING the set of string

literals, and the annotation ·⊤⊥ turns a set into a flat lattice by

adding a bottom and top element. An element of the analysis

lattice is a tuple like 〈⊥,⊥, true,⊥, ”x”〉 which represents

a value which is either the boolean value true or the string

”x”. Further, 〈⊥,⊥,⊥,⊤,⊥〉 represents all possible number

values. The abstract semantic domains (Figure 8) are similar

to the domains arising from the λD
J calculus except that a

set of marks Ξ abstracts a set of concrete locations ξℓ where

ℓ ∈ Ξ. An abstract value ϑ = 〈L,Ξ,D〉 is a triple of a

lattice element L, object marks Ξ, and dependency D.

Hence, each abstract value represents a set of base type

values and a set of objects. We write Lϑ for the analysis lat-

tice, Ξϑ for the marks, and Dϑ for the dependency compo-

nent of the abstract value ϑ. Each abstract object is identified

by the mark ℓ corresponding to the newℓ e expression cre-

ating the object. An abstract storable consists of an abstract

object, a function closure, and a set of locations representing

the prototype. Unlike before, the abstract object maps a lat-

tice element to a value. This mechanism reduces the number

of merge operations during the abstract analysis.

The abstract state is a pair Γ = 〈Σ,D〉 where Σ is the

mapping from marks to abstract storables. We write ΣΓ for

the object store, and DΓ for the dependency in Γ. Γ(Ξ)
provides a set of storables, denoted by Θ. The substitution

of D in Γ written Γ[D 7→ D′] ≡ 〈ΣΓ,D
′〉 replaces the state

dependency.

To handle recursive function calls we introduce a global

function store F , which maps a mark ℓ to two pairs of state

Γ and value ϑ. Functions are also identified by marks ℓ. The

function store contains the merged result of the last evalu-

ation for each function. The first pair ΓIn, ϑIn represents

the input state and input parameter of all heretofore taken

function calls, the second one ΓOut, ϑOut the output state

and return value. For further use we write F(ℓ)In to se-

lect the input, and F(ℓ)Out for the output. The substitutions

F [ℓ, In 7→ 〈Γ, ϑ〉] and F [ℓ, Out 7→ 〈Γ, ϑ〉] denotes the store

update operation on input or output pairs.

Its inference is stated by the following lemma.

Lemma 2 (Function Store). ∀F ,Λℓ,Γ, ϑ : If 〈Γ, ϑ〉 ⊑
F(ℓ)In and Λℓ = 〈σ̇, λℓx.e〉 then Γ, σ̇[x 7→ ϑ] ⊢ e ⇓ Γ′ | ϑ′

and 〈Γ′, ϑ′〉 ⊑ F(ℓ)Out.

The proof is by induction on the derivation of Γ′′[D 7→
DΓ′′ ⊔ D0] ⊢Θ

APP
Γ′′(Ξ0), ϑ1 ⇓ Γ′′′ | ϑ.

The traceℓ expression registers the dependency from ℓ on

all values that pass through it.

The abstraction is defined as relation between v ∈
Tainted Value and ϑ ∈ Abstract Value.

Definition 3 (Abstraction). The abstraction α : Tainted Value

→ Abstract Value is defined as:

α(v : κ) ::=

{

〈⊥, {ℓ}, {ℓ|ℓ ∈ κ}〉 v = ξℓ

〈c, ∅, {ℓ|ℓ ∈ κ}〉 v = c
(3)

Definition 4 (Abstract Operation). The abstract operation

⇓ϑ
op is defined in terms of the concrete operation ⇓v

op as

(A-PROGRAM)

Γ⊥, σ⊥ ⊢ e ⇓ Γ | ϑ

⊢R,Q
P 〈F⊥,Γ⊥, ϑ⊥〉, 〈F ,Γ, ϑ〉, e ⇓ Γ′ | ϑ′

⊢ e ⇓ Γ′ | ϑ′

(P-ITERATION-NOTEQUALS)

Γ⊥, σ⊥ ⊢ e ⇓ Γ′ | ϑ′

⊢R,Q
P R′, 〈F ,Γ′, ϑ′〉, e ⇓ Q

⊢R,Q
P R,R′, e ⇓ Q

(P-ITERATION-EQUALS)

⊢R,Q
P R,R, e ⇓ R

Figure 9. Inference rules for program interpretation.

(APP-ITERATION)

Γ ⊢Λℓ

APP Λℓ, ϑ ⇓ Γ′ | ϑ′

Γ′ ⊢Θ
APP Θ, ϑ ⇓ Γ′′ | ϑ′′

Γ ⊢Θ
APP 〈∆,Λℓ,Ξ〉; Θ, ϑ ⇓ Γ′′ | ϑ′ ⊔ ϑ′′

(APP-ITERATION-EMPTY)

Γ ⊢Θ
APP ∅, ϑ ⇓ Γ | ϑ⊥

(APP-STORE-SUBSET)

〈Γ, ϑ〉 ⊑ F(ℓ)In 〈Γ′, ϑ′〉 = F(ℓ)Out

Γ ⊢Λℓ

APP Λℓ, ϑ ⇓ Γ′ | ϑ′

(APP-STORE-NONSUBSET)

〈Γ, ϑ〉 6⊑ F(ℓ)In 〈σ̇, λℓx.e〉 = Λℓ

〈Γ̄, ϑ̄〉 = F(ℓ)In ⊔ 〈Γ, ϑ〉 F [ℓ, In 7→ 〈Γ̄, ϑ̄〉]
Γ̄, σ̇[x 7→ ϑ̄] ⊢ e ⇓ Γ̄′ | ϑ̄′ F [ℓ, Out 7→ 〈Γ̄′, ϑ̄′〉]

Γ ⊢Λℓ

APP Λℓ, ϑ ⇓ Γ̄′ | ϑ̄′

Figure 11. Inference rules for function application.

usual:

⇓ϑ
op (ϑ0, ϑ1) ::=

⊔

{⇓v
op (v0, v1) | v0 ∈ ϑ0, v1 ∈ ϑ1}

(4)

This definition implies that:

⇓v
op (v0, v1) = vop →

⇓ϑ
op (α(v0), α(v1)) ⊒ α(vop)

(5)

Figures 9, 10, 11, 12, and 13 show the inference rules for

the big-step evaluation judgment of the abstract semantics.

It has the form Γ, σ ⊢ e ⇓ Γ′ | ϑ. State Γ and scope σ
analyze expression e and result in state Γ′ and value ϑ. We

use notations similar to Figure 5.

The global program rule (A-PROGRAM) (Figure 9) relies

on two auxiliary rules to repeatedly evaluate the program

until the analysis state, an element of Analysis Lattice con-

sisting of F , Γ and ϑ, becomes stable. In the figure, R,Q

(A-CONST)

Γ, σ ⊢ c ⇓ Γ | 〈c, ∅,DΓ〉

(A-VAR)

Γ, σ ⊢ x ⇓ Γ | σ(x) ⊔ DΓ

(A-OP)

Γ, σ ⊢ e0 ⇓ Γ′ | ϑ0

Γ′, σ ⊢ e1 ⇓ Γ′′ | ϑ1

〈L,Ξ〉 =⇓ϑ
op (ϑ0, ϑ1)

Γ, σ ⊢ op(e0, e1) ⇓ Γ′′ | 〈L,Ξ,Dϑ0
⊔ Dϑ1

〉

(A-NEW-NONEXISTING)

ℓ /∈ dom(Γ) Γ, σ ⊢ e ⇓ Γ′ | 〈L,Ξ,D〉

Γ, σ ⊢ newℓ e ⇓ Γ′[ℓ 7→ Ξ] | 〈L⊥, {ℓ},DΓ ⊔ D〉

(A-NEW-EXISTING)

ℓ ∈ dom(Γ) Γ, σ ⊢ e ⇓ Γ′ | 〈L,Ξ,D〉

Γ, σ ⊢ newℓ e ⇓ Γ′[ℓ 7→ Γ(ℓ) ⊔ 〈∅,Λℓ
⊥,Ξ〉] | 〈L⊥, {ℓ},DΓ ⊔ D〉

(A-ABS-NONEXISTING)

ℓ /∈ dom(Γ) F [ℓ 7→ 〈Γ⊥, ϑ⊥,Γ⊥, ϑ⊥〉]

Γ, σ ⊢ λℓx.e ⇓ Γ[ℓ 7→ 〈σ, λℓx.e〉] | 〈L⊥, {ℓ},DΓ〉

(A-ABS-EXISTING)

ℓ ∈ dom(Γ) 〈σ̇, λℓx.e〉 = Γ(ℓ)Λℓ

Γ, σ ⊢ λℓx.e ⇓ Γ[ℓ 7→ 〈σ ⊔ σ̇, λℓx.e〉] | 〈L⊥, {ℓ},DΓ〉

(A-APP)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
Γ′, σ ⊢ e1 ⇓ Γ′′ | ϑ1

Γ′′[D 7→ DΓ′′ ⊔ D0] ⊢Θ
APP Γ′′(Ξ0), ϑ1 ⇓ Γ′′′ | ϑ

Γ, σ ⊢ e0(e1) ⇓ 〈ΣΓ′′′ ,DΓ〉 | ϑ

(A-GET)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
Γ′, σ ⊢ e1 ⇓ Γ′′ | 〈str,Ξ1,D1〉

Γ′′ ⊢Θ
GET Γ′′(Ξ0), str ⇓ ϑ

Γ, σ ⊢ e0[e1] ⇓ Γ′′ | 〈Lϑ,Ξϑ,D0 ⊔ D1 ⊔ Dϑ〉

(A-PUT)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
Γ′, σ ⊢ e1 ⇓ Γ′′ | 〈str,Ξ1,D1〉

Γ′′, σ ⊢ e2 ⇓ Γ′′′ | ϑ
Γ′′′ ⊢Ξ

PUT Ξ0, str, 〈Lϑ,Ξϑ,D0 ⊔ D1 ⊔ Dϑ〉 ⇓ Γ′′′′

Γ, σ ⊢ e0[e1] = e2 ⇓ Γ′′′′ | ϑ

(A-IFTRUE)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
L0 = true Γ′[D 7→ DΓ′ ⊔ D0], σ ⊢ e1 ⇓ Γ′′ | ϑ1

Γ, σ ⊢ if (e0) e1, e2 ⇓ 〈ΣΓ′′ ,DΓ〉 | ϑ1

(A-IFFALSE)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
L0 = false Γ′[D 7→ DΓ′ ⊔ D0], σ ⊢ e2 ⇓ Γ′′ | ϑ2

Γ, σ ⊢ if (e0) e1, e2 ⇓ 〈ΣΓ′′ ,DΓ〉 | ϑ2

(A-IF)

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉
L0 6= true ∧ L0 6= false

Γ′[D 7→ DΓ′ ⊔ D0], σ ⊢ e1 ⇓ Γ′′
1 | ϑ1

Γ′[D 7→ DΓ′ ⊔ D0], σ ⊢ e2 ⇓ Γ′′
2 | ϑ2

Γ, σ ⊢ if (e0) e1, e2 ⇓ 〈ΣΓ′′

1
⊔ ΣΓ′′

2
,DΓ〉 | ϑ1 ⊔ ϑ2

(A-TRACE)

Γ[D 7→ DΓ ⊔ ℓ], σ ⊢ e ⇓ Γ′ | ϑ

Γ, σ ⊢ traceℓ (e) ⇓ 〈ΣΓ′ ,DΓ〉 | ϑ

Figure 10. Inference rules for abstract interpretation.

range over Analysis Lattice and write F⊥, Γ⊥ and σ⊥ for

the empty instances of the components.

In Figure 10, the rules for constants (A-CONST) and

variables (A-VAR) work similarly as in λD
J .

The object and function creation rules are also omitted.

They check if an object or function, referenced by ℓ, already

exists. In this case the object or function creation has to

merge the prototypes or scopes.

The rule (A-OP) is also standard. As in λD
J the traceℓ

expression (A-TRACE) assigns mark ℓ to the sub-state.

The rules for the conditional (A-IF), (A-IFTRUE), and (A-

IFFALSE) have to handle the case that it is not possible

to distinguish between true and false. In this case both

branches have to be evaluated and the results merged.

Similar problems arise in function application, property

reference, and property assignment. Each value can refer

to a set of objects including a set of prototypes. Therefore

each referenced function has to be evaluated (A-APP) and

a property has to be read from (A-GET) or written to (A-

PUT) all objects. Results have to be merged. The auxiliary

rules are shown in figure 11, 12, and 13.

The rules (APP-ITERATION) and (APP-ITERATION-

EMPTY) iterate over all referenced functions. Function ap-

plication relies on the function store F . Before evaluating

(GET-ITERATION)

Γ ⊢∆
GET ∆,L ⇓ ϑ

Γ ⊢Θ
GET Θ,L ⇓ ϑ′

Γ ⊢Θ
GET Γ(Ξ),L ⇓ ϑ′′

Γ ⊢Θ
GET 〈∆,Λℓ,Ξ〉; Θ,L ⇓ ϑ ⊔ ϑ′ ⊔ ϑ′′

(GET-ITERATION-EMPTY)

Γ ⊢Θ
GET ∅,L ⇓ ϑ⊥

(GET-INTERSECTION)

L ⊓ Li 6=⊥
Γ ⊢Θ

GET ∆,L ⇓ ϑ′

Γ ⊢∆
GET (Li : ϑi);∆,L ⇓ ϑi ⊔ ϑ′

(GET-NONINTERSECTION)

L ⊓ Li =⊥
Γ ⊢Θ

GET ∆,L ⇓ ϑ′

Γ ⊢∆
GET (Li : ϑi);∆,L ⇓ ϑ′

(GET-EMPTY)

Γ ⊢∆
GET ∅,L ⇓ 〈〈⊤,⊥,⊥,⊥,⊥〉, ∅, ∅〉

Figure 12. Inference rules for property reference.

(PUT-ITERATION)

Γ ⊢ℓ
PUT ℓ,L, ϑ ⇓ Γ′

Γ′ ⊢Ξ
PUT Ξ,L, ϑ ⇓ Γ′′

Γ ⊢Ξ
PUT ℓ; Ξ,L, ϑ ⇓ Γ′′

(PUT-ITERATION-EMPTY)

Γ ⊢Ξ
PUT ∅,L, ϑ ⇓ Γ

(PUT-ASSIGNMENT-INDOM)

L ∈ dom(Γ(ℓ))

Γ ⊢ℓ
PUT ℓ,L, ϑ ⇓ Γ[ℓ,L 7→ Γ(ℓ)(L) ⊔ ϑ]

(PUT-ASSIGNMENT-NOTINDOM)

L /∈ dom(Γ(ℓ))

Γ ⊢ℓ
PUT ℓ,L, ϑ ⇓ Γ[ℓ,L 7→ ϑ]

Figure 13. Inference rules for property assignment.

the function body, the analyzer checks if the input, consist-

ing of Γ and parameter ϑ, is already subsumed by the stored

input. In that case (APP-STORE-SUBSET), the stored re-

sult, consisting of output state Γ and return value ϑ, is used.

Otherwise the function body is evaluated (APP-STORE-

NONSUBSET) and the store is updated with the result.

For read and write operations the rules (GET-ITERATION),

(GET-ITERATION-EMPTY), (PUT-ITERATION) and (PUT-

ITERATION-EMPTY) iterate in a similar way over all refer-

ences. An abstract object maps a lattice element to a value

in case a reference is not a singleton value. All entries hav-

ing an intersection with the reference are affected by the

read operation. The prototype-set has to be involved. (GET-

INTERSECTION), (GET-NONINTERSECTION) and (GET-

EMPTY) shows its inference. Before writing a property, the

analyser checks if the property already exists. In this case

(PUT-ASSIGNMENT-INDOM), the values get merged. Oth-

erwise (PUT-ASSIGNMENT-NOTINDOM) the value gets as-

signed. The actual implementation uses a more refined lat-

tice to improve precision.

The abstract interpretation over-approximates the depen-

dencies. The merging of results in (A-IF), (A-APP), (A-

GET), and (A-PUT) may cause false positives. While some

marked values may be independent from the mark’s source,

unmarked values are guaranteed to be independent.

6. Applying the Analysis

This section reconsiders the examples Sensitive Data (Sec-

tion 2.2) and Foreign Code (Section 2.3) from the introduc-

tion from an abstract analysis point of view.

6.1 Application: Sensitive Data

Given the newly created mark ℓ1, the function userHandler is

initially called with 〈〈⊥,⊥,⊥,⊥, uid1〉, ∅, ℓ1〉. If the result

of calling Cookie. isset can be determined to be false, then the

dependencies associated with false (ℓ1 and ℓc — resulting

from the cookie interface) are bound to the conditional’s

context.

The Ajax request cannot be evaluated. So, response in

onSuccess is a value containing the location of an unspecified

object like ∅[〈⊥,⊥,⊥,⊥,⊤〉 7→ 〈〈⊥,⊥,⊥,⊥,⊤〉, ∅, ℓa〉]
augmented with ℓa. In this case, all further calls to onSuccess

are already covered by the first input.

By calling the userHandler with ”uid2” a new mark ℓ2 is in-

troduced. This call is not covered by the first one so that the

function is reanalyzed with the merged value 〈〈⊥,⊥,⊥,⊥
, String〉, ∅, {ℓ1, ℓ2}〉. After the analysis has stabilized, name1

also depends on ℓ2.

The example illustrates that merging functions can result

in conservative results. The implementation has a more re-

fined function store which is indexed by a pair of scope σ
and source location ℓ to prevent such inaccuracies.

6.2 Application: Foreign Code

The trace expression in line 1 (Section2.3) marks the sub-

context for creating the foreach function. The resulting loca-

tion that points to the function is augmented with this mark.

By calling loadForeigenCode the mark is bound to the callees con-

text and finally to the value referencing the foreach function.

By iterating over the array elements (line 11) the depen-

dency annotation is forwarded to the value occurring in result .

Unlike many other security analyses, the objects Array

and Array. prototype do not receive marks. If the analysis can

determine the updated property exactly, as is the case with

e ::= . . . | traceℓ,A(e, c) | untrace(A→֒A′)(e, c)

Figure 14. Extended syntax of λA
J .

(DT-TRACE-CLASSIFIED)

H, ρ, κ • ℓc ⊢ e ⇓ H′ | v : κv

H, ρ, κ ⊢ traceℓ,A (e, c) ⇓ H′ | v : κv

(DT-UNTRACE)

H, ρ, κ ⊢ e ⇓ H′ | v : κv κ′ = κv[ℓ
A,c 7→ ℓA

′,c]

H, ρ, κ ⊢ untrace(A→֒A′) (e, c) ⇓ H′ | v : κ′

Figure 15. Inference rules of λA
J .

(A-TRACE-CLASSIFIED)

Γ[D 7→ DΓ ⊔ ℓA,c], σ ⊢ e ⇓ Γ′ | ϑ

Γ, σ ⊢ traceℓ,A (e, c) ⇓ 〈ΣΓ′ ,DΓ〉 | ϑ

(A-UNTRACE)

Γ, σ ⊢ e ⇓ Γ′ | ϑ D′
ϑ = Dϑ[ℓ

A,c 7→ ℓA
′,c]

Γ, σ ⊢ untrace(A→֒A′) (e, c) ⇓ 〈ΣΓ′ ,DΓ〉 | 〈Lϑ,Ξϑ,D
′
ϑ〉

Figure 16. Inference rules for abstract trace.

foreach, then no other properties can be affected by the update

(expect the length). Such an abstract update occurs if the

property name is independent from the input. Otherwise, the

update happens on a approximated set of property names, all

of which are marked by this update.

6.3 Further sample applications

We also applied our analysis to real-world examples like the

JavaScript Cookie Library with jQuery bindings and JSON

support1 (version 2.2.0) and the Rye2 library (version 0.1.0),

a JavaScript library for DOM manipulation.

These libraries were augmented by wrapping several

functions and objects using the trace function. The analy-

sis successfully tracks the flow of the thus marked values,

which pop up in the expected places.

7. Dependency Classification

To cater for dependency classification, the accompanying

formal framework λA
J extends λD

J (Figure 14). In λA
J marks

are classified according to a finite set of modes. They are fur-

ther augmented by an identifier that can be referred to in the

1 http://code.google.com/p/cookies/
2 http://ryejs.com/

trace and untrace expressions. The operator traceℓ,A generates

a mark in mode A and the untrace operator changes the mode

of all ℓ-marks according to the sanitization method applied

(this distinction is ignored in the example). In the calculus,

this change is expressed by the untrace(A→֒A′) expression,

where A ranges over an unspecified set of modes.

Marks κ ::= . . . | ℓA,c are extended by an new mark-

type, a location classified with a class A and identifier c.
The mark propagation is like in Section 4 (see Figure 15).

Rule (DT-TRACE-CLASSIFIED) augments the sub-context

with the new classified mark. (DT-UNTRACE) substitutes

location ℓA,c by a declassified location ℓA
′,c.

In the analysis, τ ::= ℓ | ℓA,c replaces ℓ in D. Rule (A-

TRACE-CLASSIFIED) (Figure 16) generates new dependen-

cies and (A-UNTRACE) substitutes A by A′ in all locations

ℓ labeled with c.

8. Technical Results

To prove the soundness of our abstract analysis we show

termination insensitive noninterference. The required steps

are proving noninterference for the λD
J calculus, showing

that the abstract analysis provides a correct abstraction of

the λD
J calculus, and that the abstract analysis terminates.

8.1 Noninterference

Proving noninterference requires relating different substitu-

tion instances of the same expression. As they may evaluate

differently, we need to be able to cater for differences in the

heap, for example, with respect to locations.

Definition 5. A renaming ♭ ::= ∅ | ♭[ξℓ 7→ ξℓ′] is a partial

mapping on locations where ♭(ξℓ) carries the same mark ℓ
as ξℓ.

It extends to values by ♭(c) = c.

In the upcoming definitions, the dependency annotation κ
contains the marks created by the selected traceℓ expression,

the body of which may be substituted.

Further, we introduce equivalence relations for each ele-

ment affected by the ℓ substitution.

Definition 6. Two marked values are ♭, κ-equivalent v0 :
κ0 ≡♭,κ v1 : κ1 if they are equal as long as their marks are

disjoint from κ.

κ ∩ κ0 = ∅ ∧ κ ∩ κ1 = ∅ ⇒ ♭(v0) = v1 (6)

Definition 7. Two environments ρ0,ρ1 are ♭, κ-equivalent

ρ0 ≡♭,κ ρ1 if R := dom(ρ0) = dom(ρ1) and they contain

equivalent values.

∀x ∈ R : ρ0(x) ≡♭,κ ρ1(x) (7)

Definition 8. Two expressions e0,e1 are ♭, κ-equivalent

e0 ≡♭,κ e1 iff they only differ in the argument of traceℓ(e′)
subexpressions with ℓ ∈ κ.

κ = {ℓ0, ..., ℓn} ⇒

∃e′0 . . . ∃e
′
n : e0 = e1[ℓ0 7→ e′0] . . . [ℓn 7→ e′n]

(8)

Definition 9. Two storables s0,s1 are ♭, κ-equivalent

〈o0, 〈ρ0, λ
ℓx.e0〉, p0〉 ≡♭,κ 〈o1, 〈ρ1, λ

ℓx.e1〉, p1〉 if S :=
dom(o0) = dom(o1) and they only differ in values c : κc

with any intersection with κ.

∀str ∈ S : o0(str) ≡♭,κ o1(str) (9)

ρ0 ≡♭,κ ρ1 ∧ λℓx.e0 ≡♭,κ λℓx.e1 (10)

♭(p0) = p1 (11)

Definition 10. Two heaps H0,H1 are ♭, κ-equivalent H0 ≡♭,κ

H1 if they only differ in values x : κx with any intersection

with κ or in one-sided locations.

∀ξℓ ∈ dom(♭) : H0(ξ
ℓ) ≡♭,κ H1(♭(ξ

ℓ)) (12)

Now, the noninterference theorem can be stated as fol-

lows.

Theorem 1. Suppose H, ρ, κ ⊢ e ⇓ H′ | v : κv. If ℓ /∈ κ̄
and H ≡♭,{ℓ|ℓ/∈κ̄} H̃ and ρ ≡♭,{ℓ|ℓ/∈κ̄} ρ̃ then H̃, ρ̃, κ ⊢ ē ⇓

H̃′ | ṽ : κ̃v with ē = e[ℓ 7→ ẽ] and e ≡♭,{ℓ|ℓ/∈κ̄} ē and

H′ ≡♭′,{ℓ|ℓ/∈κ̄} H̃′ and v : κv ≡♭′,{ℓ|ℓ/∈κ̄} ṽ : κ̃v, for some ♭′

extending ♭.

The proof is by induction on the evaluation ⇓ (Section B).

8.2 Correctness

The abstract analysis is a correct abstraction of the λD
J cal-

culus. To formalize correctness, we introduce a consistency

relation that relates semantic domains of the concrete depen-

dency tracking semantics of λD
J with the abstract domains.

Definition 11. The consistency relation ≺C is defined by:

κ ≺C D ⇔ κ ⊆ D
c ≺C L ⇔ c ∈ L
ξℓ ≺C Ξ ⇔ ℓ ∈ Ξ

v ≺C ϑ ⇔

{

ξℓ ≺C Ξϑ, v = ξℓ

c ≺C Lϑ, v = c

v : κ ≺C ϑ ⇔ κ ≺C Dϑ ∧ v ≺C ϑ
o ≺C ∆ ⇔ ∀str ∈ dom(o) : ∃L ∈ dom(∆) :

str ≺C L ∧ o(str) ≺C ∆(L) ∧
∀str /∈ dom(o) : undefined ≺C ∆(L)

ρ ≺C σ ⇔ ∀x ∈ dom(ρ) : x ∈ dom(σ)
∧ ρ(x) ≺C σ(x)

f ≺C Λℓ ⇔ 〈ρ, λℓx.ef 〉 = f ∧ 〈σ, λℓx.eΛℓ〉 = Λℓ

→ ρ ≺C σ ∧ λℓx.ef = λℓx.eΛℓ

s ≺C θ ⇔ 〈o, f, p〉 = s ∧ 〈∆,Λℓ,Ξ〉 = θ
→ o ≺C ∆ ∧ f ≺C Λℓ ∧ p ≺C Ξ

H ≺C Γ ⇔ ∀ξℓ ∈ dom(H) : ℓ ∈ ΣΓ

∧ H(ξℓ) ≺C ΣΓ(ℓ)

Showing adherence to the inference of λD
J requires to

proof that consistent heaps, environments, and values pro-

duce a consistent heap and value.

Lemma 3 (Program). ∀e : ∅, ∅, ∅ ⊢ e ⇓ H | ω and

⊢ e ⇓ Γ | ϑ implies that 〈H, ω〉 ≺C 〈Γ, ϑ〉

Given by theorem (2) and definition (11).

Lemma 4 (Property Reference). ∀H, ξℓ, str,Γ,Ξ,L :H ≺C

Γ, ξℓ ≺C Ξ, str ≺C L, and ⊢Θ
GET

Γ(Ξ),L ⇓ ϑ implies

H(ξℓ)(str) ≺C ϑ

The proof is by definition (11) and by induction on the

derivation of Γ′′ ⊢Θ
GET

Γ′′(Ξ0), str ⇓ ϑ.

Lemma 5 (Property Assignment). ∀H, ξℓ, str, ω,Γ,Ξ,L, ϑ :
H ≺C Γ, ξℓ ≺C Ξ, str ≺C L, ω ≺C ϑ and Γ ⊢Ξ

PUT

Ξ,L, ϑ ⇓ Γ′ implies H[ξℓ, str 7→ ω] ≺C Γ′

The proof is by definition (11) and by induction on

the derivation of Γ′′′ ⊢Ξ
PUT Ξ0, str, 〈Lϑ,Ξϑ,D0 ⊔ D1 ⊔

Dϑ〉 ⇓ Γ′′′′.

The following correctness theorem relates the concrete

semantics to the abstract semantics.

Theorem 2. Suppose that H, ρ, κ ⊢ e ⇓ H′ | x then ∀Γ, σ
with H ≺C Γ, ρ ≺C σ and κ ≺C DΓ: Γ, σ ⊢ e ⇓ Γ′ | ϑ
with H′ ≺C Γ′ and x ≺C ϑ.

The proof is by induction on the evaluation of e (Section

C).

8.3 Termination

Finally, we want to guarantee termination of our analysis.

Theorem 3. For each Γ, σ, and e, there exist Γ′ and ϑ such

that Γ, σ ⊢ e ⇓ Γ′ | ϑ.

For the proof (Section D), we observe that all rules of the

abstract system in Section 5 are monotone with respect to all

their inputs. As the analysis lattice for Γ has finite height, all

fixpoint computations in the abstract semantics terminate.

9. Implementation

The implementation extends TAJS3, the type analyzer for

JavaScript. TAJS accepts standard JavaScript [14] .

The abstract interpretation of values and the analysis state

are extended by a set of dependency annotations, according

to the description in Section 5. As shown in Section 3.1 val-

ues can be marked by using the traceℓ expression, which

is implemented as a built-in function. A configuration file

can be used to trace values produced by JavaScript standard

operations or DOM functions. The DOM environment gets

constructed during the initialization of TAJS and is available

as as normal code would be. The functionality and the de-

pendency propagation for these operations is hard coded.

The extended dependency set has no influence on the

lattice structure and does not compromise the precision of

the type analyzer. Some notes about the precision can be

found in the original work of TAJS [15].

The functions traceℓ and untrace(A→֒A′) have to be de-

fined as identity functions before the instrumented code can

run in a standard JavaScript engine.

3 http://www.brics.dk/TAJS/

Benchmark TAJS TbDA

Richards (539 lines) 1596 2890

DeltaBlue (880 lines) 3471 4031

Crypto (1689 lines) 3637 7527

RegExp (4758 lines) 3710 4104

Splay (394 lines) 1598 2521

Navier Stokes (387 lines) 2794 3118

Figure 17. Google V8 Benchmark Suite.

TAJS handles all language features like prototypes, iter-

ations, and exceptions. The specification in Figure 10 sim-

plifies the implementation in several respects. To support the

conditional to properly account for indirect information flow,

the control flow graph had to be extended with special de-

pendency push and pop nodes to encapsulate sub-graphs and

to add or remove state dependencies.

The type analyzer provides an over-approximation ac-

cording to the principles described in Section 3. The analy-

sis result shows the set of traced values and the set of values,

which are potentially influenced by them.

There are several ways to use the analyzer. First, a value

can be marked and its influence and usage can be deter-

mined. This feature can be used to prevent private data from

illegal usage and theft. Second, the traceℓ function may be

used to encapsulate foreign code. As a result of this encapsu-

lation each value which is modified due to the foreign code

is highlighted by the analysis. An inspection of the results

can show breaches of integrity.

Our implementation is based on an early version of TAJS.

The current TAJS version includes support for further lan-

guage features including eval [16]. The dependency analy-

sis can benefit from these extensions by merging it into the

current development branch of TAJS.

9.1 Runtime Evaluation

We evaluated the performance impact of our extension by

analyzing programs from the Google V8 Benchmark Suite4.

The programs we selected range from about 400 to 5000

lines of code and perform tasks like an OS kernel simulation,

constraint solving, or extraction of regular expressions. The

tests were run on a MacBook Pro with 2 GHz Intel Core i7

processor with 8 GB memory.

Figure 17 shows the particular benchmarks together with

the averaged time (in milliseconds) to run the analysis and to

print the output. The TAJS column shows the timing of the

original type analyzer without dependency extension. The

TbDA column shows the timing of our extended version.

The figures demonstrate that the dependency analysis leads

to a slowdown between 12% and 106%. Two further bench-

marks (RayTrace and EarleyBoyer) did not run to comple-

tion because of compatibility problems caused by the out-

dated version of TAJS underlying our implementation.

4 http://v8.googlecode.com/svn/data/benchmarks/v7/run.html

10. Related Work

Information flow analysis was pioneered by Denning’s work

[8, 9] which models different security levels as values in a

lattice containing elements like High and Low and which

suggests an analysis as an abstract interpretation of the prop-

agation of these levels through the program. Zanioli and oth-

ers [24] present a recent example of such an analysis with an

emphasis on constructing an expressive analysis domain.

Many authors have taken up this approach and transposed

it to type theoretic and logical settings [1, 3, 13, 21, 23].

In these systems, input value types are enhanced with se-

curity levels. Well-typed programs guarantee that no High

value flows into a Low output and thus noninterference be-

tween high inputs and low outputs [10]. Similar to the sound-

ness property of our dependency analysis changes on High

inputs are unobservable in Low outputs. Dependencies are

related to security types, but more flexible [2]. They can be

analyzed before committing to a fixed security lattice.

Security aspects of JavaScript programs have received

much attention. Different approaches focus on static or dy-

namic analysis techniques, e.g. [6, 12, 17], or attempt to

make guarantees by reducing the functionality [20]. The

analysis for dependencies is no security analysis per se, but

the analysis results express information that is relevant for

confidentiality and integrity concerns.

Dependency analysis can be seen as the static counterpart

to data tainting (e.g., [7]). Tainting relies on augmenting the

run-time representation of a value with information about

its properties (like its confidentiality level). Users of the

value first check at run time if that use is granted according

to some security policy. Dynamic tainting approaches have

been successfully used to address security attacks, including

buffer overruns, format string attacks, SQL and command

injections, and cross-site scripting. Tainting semantics are

also used for automatic sanitizer placement [5, 19]. There

are also uses in program understanding, software testing,

and debugging. Tainting can also be augmented with static

analysis to increase its effectiveness [22].

Dynamic languages like JavaScript have many peculiari-

ties that make program analysis and the interpretation of its

results challenging [4]. TAJS [15] and hence our analysis

can handle almost all dynamic features of JavaScript.

11. Conclusion

We have designed a type-based dependency analysis for

JavaScript, proved its soundness and termination, and demon-

strated that independence ensures noninterference. We have

implemented the analysis as an extension of the open-source

JavaScript analyzer TAJS. This approach ensures that our

analysis can be applied to real-world JavaScript programs.

While a dependency analysis is not a security analysis,

it can form the basis for investigating noninterference. This

way, its results can be used to ensure confidentiality and

integrity, as well as verify the correct placement of sanitizers.

References

[1] M. Abadi. Access control in a core calculus of dependency.

Electron. Notes Theor. Comput. Sci., 172:5–31, April 2007.

[2] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core

calculus of dependency. In A. :Aiken, editor, Proceedings

26th Annual ACM Symposium on Principles of Programming

Languages, pages 147–160, San Antonio, Texas, USA, Jan.

1999. ACM Press.

[3] T. Amtoft and A. Banerjee. Information flow analysis in log-

ical form. In Proc. 11th Static Analysis Symposium, SAS’04,

pages 33–36. Springer, 2004.

[4] A. Askarov and A. Sabelfeld. Tight enforcement of

information-release policies for dynamic languages. In Com-

puter Security Foundations Symposium, 2009. CSF ’09. 22nd

IEEE, pages 43 –59, july 2009. doi: 10.1109/CSF.2009.22.

[5] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,

C. Kruegel, and G. Vigna. Saner: Composing static and

dynamic analysis to validate sanitization in web applications.

In IEEE Symposium on Security and Privacy, pages 387–

401, Oakland, California, USA, May 2008. IEEE Computer

Society.

[6] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged

information flow for javascript. In Proceedings of the 2009

ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’09, pages 50–62, New York, NY,

USA, 2009. ACM.

[7] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint

analysis framework. In Proc. 2007 Symposium on Software

Testing and Analysis, ISSTA ’07, pages 196–206, New York,

NY, USA, 2007. ACM.

[8] D. E. Denning. A lattice model of secure information flow.

Commun. ACM, 19:236–243, May 1976.

[9] D. E. Denning and P. J. Denning. Certification of programs for

secure information flow. Commun. ACM, 20:504–513, July

1977.

[10] J. A. Goguen and J. Meseguer. Security policies and security

models. In IEEE Symposium on Security and Privacy, pages

11–20, 1982.

[11] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of

JavaScript. In Proc. 24th European Conference on Object-

oriented Programming, ECOOP’10, pages 126–150, Berlin,

Heidelberg, 2010. Springer-Verlag.

[12] D. Hedin and A. Sabelfeld. Information-flow security for a

core of javascript. In Computer Security Foundations Sympo-

sium (CSF), 2012 IEEE 25th, pages 3–18. IEEE, 2012.

[13] N. Heintze and J. G. Riecke. The SLam calculus: Pro-

gramming with secrecy and integrity. In Proc. 25th ACM

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’98, pages 365–377, New York, NY,

USA, 1998. ACM.

[14] E. International. Standard ECMA-262, volume 3. 1999.

[15] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for

JavaScript. In Proc. 16th Static Analysis Symposium, SAS’09,

volume 5673 of LNCS. Springer-Verlag, August 2009.

[16] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the

eval that men do. In Proc. 21st International Symposium on

Software Testing and Analysis (ISSTA), July 2012.

[17] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information

flow analysis for javascript. In Proceedings of the 1st ACM

SIGPLAN international workshop on Programming language

and systems technologies for internet clients, PLASTIC ’11,

pages 9–18, New York, NY, USA, 2011. ACM.

[18] M. Keil and P. Thiemann. Type-based dependency analysis for

javascript. Technical report, Institute for Computer Science,

University of Freiburg, 2013.

[19] B. Livshits and S. Chong. Towards fully automatic placement

of security sanitizers and declassifiers. In Proceedings of the

40th annual ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, POPL ’13, pages 385–398,

New York, NY, USA, 2013. ACM.

[20] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.

Safe active content in sanitized javascript. Technical report,

Tech. Rep., Google, Inc, 2008.

[21] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. IEEE Journal on Selected Areas in Communi-

cations, 21:2003, 2003.

[22] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. Cross-site scripting prevention with dynamic data

tainting and static analysis. In Proc. Network and Distributed

System Security Symposium (NDSS), volume 42, 2007.

[23] D. Volpano, C. Irvine, and G. Smith. A sound type system for

secure flow analysis. J. Comput. Secur., 4:167–187, January

1996.

[24] M. Zanioli, P. Ferrara, and A. Cortesi. Sails: Static analysis of

information leakage with Sample. In Proc. 27th Annual ACM

Symposium on Applied Computing, SAC ’12, pages 1308–

1313, New York, NY, USA, 2012. ACM.

A. Context Dependency

Proof of Lemma 1. H, ρ, κ ⊢ e ⇓ H′ | ve : κe im-

plies that κ ⊆ κe. By induction on the derivation of

H, ρ, κ ⊢ e ⇓ H′ | ve : κe.

Case (DT-CONST): e ≡ c; ve ≡ c; κe ≡ κ. Claim holds

because κ ⊆ κ.

Case (DT-VAR): e ≡ x; ve ≡ v; κe ≡ κv • κ | v : κv =
ρ(x). Claim holds because κ ⊆ κv • κ.

Case (DT-OP): e ≡ op(e0, e1); ve ≡ vop; κe ≡ κ0 • κ1.

By inversion

H, ρ, κ ⊢ e0 ⇓ H′ | v0 : κ0 (13)

H′, ρ, κ ⊢ e1 ⇓ H′′ | v1 : κ1 (14)

holds. Induction yields κ ⊆ κ0 and κ ⊆ κ1. Claim holds

because κ ⊆ κe = κ0 • κ1.

Case (DT-ABS): e ≡ λℓx.e; ve ≡ ξℓ; κe ≡ κ. Claim holds

because κ ⊆ κ.

Case (DT-NEW): e ≡ newℓ ep; ve ≡ ξℓ; κe ≡ κv . By

inversion

H, ρ, κ ⊢ ep ⇓ H′ | v : κv (15)

holds. Induction yields κ ⊆ κv . Claim holds because

κ ⊆ κv.

Case (DT-APP): e ≡ e0(e1); ve ≡ v; κe ≡ κv. By

inversion

H′′, ρ̇[x 7→ v1 : κ1], κ • κ0 ⊢ ė ⇓ H′′′ | v : κv (16)

holds where ρ̇, ė is the closure obtained from evaluating

e0. It follows that κ ⊆ κ • κ0 ⊆ κv .

Case (DT-GET): e ≡ e0[e1]; ve ≡ v; κe ≡ κv • κξℓ •
κstr | v : κv = H′′(ξℓ)(str). By inversion

H, ρ, κ ⊢ e0 ⇓ H′ | ξℓ : κξℓ (17)

H′, ρ, κ ⊢ e1 ⇓ H′′ | str : κstr (18)

holds. Induction yields κ ⊆ κξℓ and κ ⊆ κstr. Claim

holds because κ ⊆ κv • κξℓ • κstr.

Case (DT-PUT): e ≡ e0[e1] = e2; ve ≡ v; κe ≡ κv. By

inversion

H′′, ρ, κ ⊢ e2 ⇓ H′′′ | v : κv (19)

holds. Induction yields κ ⊆ κv . Claim holds because

κ ⊆ κv.

Case (DT-IFTRUE): e ≡ if (e0) e1, e2; ve ≡ v1; κe ≡ κ1.

By inversion

H′, ρ, κ • κ0 ⊢ e1 ⇓ H′′
1 | v1 : κ1 (20)

holds. It follows that κ ⊆ κ • κ0 ⊆ κ1

Case (DT-IFFALSE): Analogous to case

(DT-IFTRUE).

Case (DT-TRACE): e ≡ traceℓ (e′); ve ≡ v; κe ≡ κv. By

inversion

H, ρ, κ • ℓ ⊢ e′ ⇓ H′ | v : κv (21)

holds. It follows that κ ⊆ κ • ℓ ⊆ κv

B. Noninterference

Proof of Theorem 1. Suppose H, ρ, κ ⊢ e ⇓ H′ | v : κv . If

ℓ /∈ κ̄ and H ≡♭,{ℓ|ℓ/∈κ̄} H̃ and ρ ≡♭,{ℓ|ℓ/∈κ̄} ρ̃ then H̃, ρ̃, κ ⊢

ē ⇓ H̃′ | ṽ : κ̃v with ē = e[ℓ 7→ ẽ] and e ≡♭,{ℓ|ℓ/∈κ̄} ē and

H′ ≡♭′,{ℓ|ℓ/∈κ̄} H̃′ and v : κv ≡♭′,{ℓ|ℓ/∈κ̄} ṽ : κ̃v , for some ♭′

extending ♭.
Proof by induction on the derivation of H, ρ, κ ⊢ e ⇓ H′ | v :

κ and H̃, ρ̃, κ ⊢ ē ⇓ H̃′ | ṽ : κ̃v .

Case (DT-CONST): e ≡ c. By definition (6) claim holds

because: c = c → c : κ ≡♭,{ℓ|ℓ/∈κ̄} c : κ

Case (DT-VAR): e ≡ x. ∀ℓ /∈ κ̄ yields

Subcase ℓ /∈ κ: By definition (6), (7) claim holds be-

cause: ρ ≡♭,{ℓ|ℓ/∈κ̄} ρ̃ → ρ(x)•κ ≡♭,{ℓ|ℓ/∈κ̄} ρ̃(x)•κ

Subcase ℓ ∈ κ: From definition (6), (7) claim holds

because: ℓ ∈ κ → ρ(x) • κ ≡♭,{ℓ|ℓ/∈κ̄} ρ̃(x) • κ

Case (DT-OP): e ≡ op(e0, e1). By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ e0[ℓ 7→ ẽ] ⇓ H̃′ | ṽ0 : κ̃0 (22)

∀ℓ /∈ κ̄ : H̃′, ρ̃, κ ⊢ e1[ℓ 7→ ẽ] ⇓ H̃′′ | ṽ1 : κ̃1 (23)

holds. ∀ℓ /∈ κ̄ yields

Subcase ℓ /∈ κ0 ∧ ℓ /∈ κ̃0 ∧ ℓ /∈ κ1 ∧ ℓ /∈ κ̃1: By

definition (6) we obtain

ℓ /∈ κ0 ∧ ℓ /∈ κ̃0 → v0 = ṽ0 (24)

ℓ /∈ κ1 ∧ ℓ /∈ κ̃1 → v1 = ṽ1 (25)

and this leads to:

⇓v
op (v0, v1) • κ0 • κ1 ≡♭,{ℓ|ℓ/∈κ̄}

⇓v
op (ṽ0, ṽ1) • κ̃0 • κ̃1

(26)

Subcase ℓ ∈ κ0 ∨ ℓ ∈ κ̃0 ∨ ℓ ∈ κ1 ∨ ℓ ∈ κ̃1: Again

by (6)

⇓v
op (v0, v1) • κ0 • κ1 ≡♭,{ℓ|ℓ/∈κ̄}

⇓v
op (ṽ0, ṽ1) • κ̃0 • κ̃1

(27)

holds.

Claim holds because ⇓v
op (v0, v1) •κ0 •κ1 ≡♭,{ℓ|ℓ/∈κ̄}⇓

v
op

(ṽ0, ṽ1) • κ̃0 • κ̃1.

Case (DT-ABS): e ≡ λℓx.e where location ξℓ with ξℓ /∈
dom(H) and location ξ̃ℓ with ξ̃ℓ /∈ dom(H̃) extends

the renaming ♭ with ♭′ = ♭[ξℓ 7→ ξ̃ℓ]. By definition (6)

ξℓ : κ ≡♭′,{ℓ|ℓ/∈κ̄} ξ̃ℓ : κ holds. Claim holds because:

H[ξℓ 7→ 〈ρ, λℓx.e〉] ≡♭′,{ℓ|ℓ/∈κ̄} H̃[ξ̃ℓ 7→ 〈ρ̃, λℓx.ẽ〉]
(28)

Case (DT-NEW): e ≡ newℓ ep where location ξℓ with ξℓ /∈

dom(H) and location ξ̃ℓ with ξ̃ℓ /∈ dom(H̃) extends

the renaming ♭ with ♭′ = ♭[ξℓ 7→ ξ̃ℓ]. By definition (6)

ξℓ : κ ≡♭′,{ℓ|ℓ/∈κ̄} ξ̃ℓ : κ holds. By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ ep[ℓ 7→ ẽ] ⇓ H̃′ | ṽ : κ̃v (29)

holds. Claim holds because:

H′[ξℓ 7→ v] ≡♭′,{ℓ|ℓ/∈κ̄} H̃′[ξ̃ℓ 7→ ṽ] (30)

Case (DT-APP): e ≡ e0(e1). By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ e0[ℓ 7→ ẽ] ⇓ H̃′ | ξ̃ℓ : κ̃0 (31)

∀ℓ /∈ κ̄ : H̃′, ρ̃, κ ⊢ e1[ℓ 7→ ẽ] ⇓ H̃′′ | ṽ1 : κ̃1 (32)

holds. ∀ℓ /∈ κ̄ yields

Subcase ℓ /∈ κ0 ∧ ℓ /∈ κ̃0: By definition (6) we obtain

ℓ /∈ κ0 ∧ ℓ /∈ κ̃0 → ♭(ξℓ) = ξ̃ℓ (33)

and this leads by definition (9), (10) to:

〈ρ̇, λℓx.ė〉 = H(ξℓ) ∧ 〈ρ̈, λℓx.ë〉 = H̃(ξ̃ℓ)

→ ρ̇ ≡♭,{ℓ|ℓ/∈κ̄} ρ̈ ∧ λℓx.ė ≡♭,{ℓ|ℓ/∈κ̄} λℓx.ë
(34)

Hence, ρ̇[x 7→ v1 : κ1] ≡♭,{ℓ|ℓ/∈κ̄} ρ̈[x 7→ ṽ1 : κ̃1] and

ė ≡♭,{ℓ|ℓ/∈κ̄} ë → ė ≡♭,{ℓ|ℓ/∈κ̄} ë[ℓ 7→ ẽ] complies

the postcondition to apply the induction where

∀ℓ /∈ κ̄ : H̃′′, ρ̈[x 7→ ṽ1 : κ̃1], κ ⊢

ë[ℓ 7→ ẽ] ⇓ H̃′′ | ṽ : κ̃v

(35)

Subcase ℓ ∈ κ0 ∨ ℓ ∈ κ̃0: By lemma (1) applied on

κ • κ0 ⊆ κv and κ • κ̃0 ⊆ κ̃v the claim holds

because:

v : κv ≡♭,{ℓ|ℓ/∈κ̄} ṽ : κ̃v (36)

H′′′ ≡♭,{ℓ|ℓ/∈κ̄} H̃′′′ (37)

Case (DT-GET): e ≡ e0[e1]. By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ e0[ℓ 7→ ẽ] ⇓ H̃′ | ξ̃ℓ : κ̃ξℓ (38)

∀ℓ /∈ κ̄ : H̃′, ρ̃, κ ⊢ e1[ℓ 7→ ẽ] ⇓ H̃′′ | s̃tr : κ̃str (39)

hold.

Subcase ℓ /∈ κξℓ ∧ ℓ /∈ κ̃ξℓ ∧ ℓ /∈ κstr ∧ ℓ /∈ κ̃str: By

definition (6) we obtain

ℓ /∈ κξℓ ∧ ℓ /∈ κ̃ξℓ → ♭(ξℓ) = ξ̃ℓ (40)

ℓ /∈ κstr ∧ ℓ /∈ κ̃str → str = s̃tr (41)

which follows that

H′′(ξℓ)(str) • κξℓ • κstr ≡♭,{ℓ|ℓ/∈κ̄}

H̃′′(ξ̃ℓ)(s̃tr) • κ̃ξℓ • κ̃str

(42)

Subcase ℓ ∈ κξℓ ∨ ℓ ∈ κ̃ξℓ ∨ ℓ ∈ κstr ∨ ℓ ∈ κ̃str: By

definition (6) we obtain

H′′(ξℓ)(str) • κξℓ • κstr ≡♭,{ℓ|ℓ/∈κ̄}

H̃′′(ξ̃ℓ)(s̃tr) • κ̃ξℓ • κ̃str

(43)

Claim holds because H′′(ξℓ)(str) • κξℓ • κstr ≡♭,{ℓ|ℓ/∈κ̄}

H̃′′(ξ̃ℓ)(s̃tr) • κ̃ξℓ • κ̃str.

Case (DT-PUT): e ≡ e0[e1] = e2. By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ e0[ℓ 7→ ẽ] ⇓ H̃′ | ξ̃ℓ : κ̃ξℓ (44)

∀ℓ /∈ κ̄ : H̃′, ρ̃, κ ⊢ e1[ℓ 7→ ẽ] ⇓ H̃′′ | s̃tr : κ̃str (45)

∀ℓ /∈ κ̄ : H̃′′, ρ̃, κ ⊢ e2[ℓ 7→ ẽ] ⇓ H̃′′′ | ṽ : κ̃v (46)

holds. ∀ℓ /∈ κ̄ yields

Subcase ℓ /∈ κξℓ ∧ ℓ /∈ κ̃ξℓ ∧ ℓ /∈ κstr ∧ ℓ /∈ κ̃str ∧ ℓ /∈
κv ∧ ℓ /∈ κ̃v . By definition (6), (10) we obtain

ℓ /∈ κξℓ ∧ ℓ /∈ κ̃ξℓ → ♭(ξℓ) = ξ̃ℓ (47)

ℓ /∈ κstr ∧ ℓ /∈ κ̃str → str = s̃tr (48)

ℓ /∈ κv ∧ ℓ /∈ κ̃v → v = ṽ (49)

and this leads to:

H′′′[ξℓ, str 7→ v : κv • κξℓ • κstr] ≡♭,{ℓ|ℓ/∈κ̄}

H̃′′′[ξ̃ℓ, s̃tr 7→ ṽ : κ̃v • κ̃ξℓ • κ̃str]
(50)

Subcase ℓ ∈ κξℓ ∨ ℓ ∈ κ̃ξℓ ∨ ℓ ∈ κstr ∨ ℓ ∈ κ̃str ∨ ℓ ∈
κv ∨ ℓ ∈ κ̃v . By definition (6), (10)

H′′′[ξℓ, str 7→ v : κv • κξℓ • κstr] ≡♭,{ℓ|ℓ/∈κ̄}

H̃′′′[ξ̃ℓ, s̃tr 7→ ṽ : κ̃v • κ̃ξℓ • κ̃str]
(51)

holds.

Claim holds because H′′′[ξℓ, str 7→ v : κv • κξℓ •

κstr] ≡♭,{ℓ|ℓ/∈κ̄} H̃′′′[ξ̃ℓ, s̃tr 7→ ṽ : κ̃v • κ̃ξℓ • κ̃str].

Case (DT-IFTRUE): e ≡ if (e0) e1, e2. By inversion

∀ℓ /∈ κ̄ : H̃, ρ̃, κ ⊢ e0[ℓ 7→ ẽ] ⇓ H̃′ | ṽ0 : κ̃0 (52)

∀ℓ /∈ κ̄ : H̃′, ρ̃, κ • κ̃0 ⊢

e1[ℓ 7→ ẽ] ⇓ H̃′′
1 | ṽ1 : κ̃1

(53)

holds. ∀ℓ /∈ κ̄ yields

Subcase ℓ /∈ κ0 ∧ ℓ /∈ κ̃0: By definition (6) we obtain

ℓ /∈ κ0 ∧ ℓ /∈ κ̃0 → v0 = ṽ0 (54)

Claim holds by inversion of (DT-IFTRUE).

Subcase ℓ ∈ κv ∨ ℓ ∈ ṽ0: By lemma (1) applied on

κ • κ0 ⊆ κ1 and κ • κ̃0 ⊆ κ̃1 the claim holds

because:

v1 : κ1 ≡♭,{ℓ|ℓ/∈κ̄} ṽ1 : κ̃1 (55)

H′′
1 ≡♭,{ℓ|ℓ/∈κ̄} H̃′′

1 (56)

Case (DT-IFFALSE): Analogous to case

(DT-IFTRUE).

Case (DT-TRACE): e ≡ traceℓ (e). By inversion

∀ℓ′ /∈ κ̄ : H̃, ρ̃, κ • ℓ ⊢ eℓ[ℓ 7→ ẽ] ⇓ H̃′ | ṽ : κ̃v (57)

holds. ∀ℓ /∈ κ̄ yields

Subcase ℓ′ 6= ℓ: Claim holds by inversion (DT-TRACE).

Subcase ℓ′ = ℓ: By definition (1) we obtain:

∀ℓ′ /∈ κ̄ : H̃, ρ̃, κ • ℓ ⊢ ẽ ⇓ H̃′′ | ṽ′ : κ̃′
v (58)

By lemma (1) applied on κ • ℓ ⊆ κ̃′
v the claim holds

because:

ℓ ∈ κ̃′
v → v : κv ≡♭,{ℓ|ℓ/∈κ̄} ṽ′ : κ̃′

v (59)

ℓ ∈ κ̃′
v → H′ ≡♭,{ℓ|ℓ/∈κ̄} H̃′′ (60)

C. Correctness

First, we state some auxiliary lemmas.

Lemma 6 (Subset consistency on states). H ≺C Γ0 implies

H ≺C Γ0 ⊔ Γ1 with Γ0 ⊑ Γ0 ⊔ Γ1.

Proof of Lemma 6. By definition (11).

Lemma 7 (Subset consistency on values). ω ≺C ϑ0 implies

ω ≺C ϑ0 ⊔ ϑ1 with ϑ0 ⊑ ϑ0 ⊔ ϑ1.

Proof of Lemma 7. By definition (11).

Lemma 8 (Consistency on dependencies). v : κv ≺C

ϑ ∧ κ ≺C D implies v : κv • κ ≺C 〈Lϑ,Ξϑ,Dϑ ⊔ D〉

Proof of Lemma 8. By definition (11).

Lemma 9 (Property Update). ∀s, θ,L, ϑ | s ≺C θ implies

s ≺C θ[L 7→ θ(L) ⊔ ϑ]

Proof of Lemma 9. By definition (11).

Proof of Theorem 2. Suppose that H, ρ, κ ⊢ e ⇓ H′ | v
then ∀Γ, σ with H ≺C Γ, ρ ≺C σ and κ ≺C DΓ:

Γ, σ ⊢ e ⇓ Γ′ | ϑ with H′ ≺C Γ′ and v ≺C ϑ. Proof

by induction on the derivation of H, ρ, κ ⊢ e ⇓ H′ | ω and

Γ, σ ⊢ e ⇓ Γ′ | ϑ.

Case (DT-CONST): e ≡ c. Claim holds because c : κ ≺C

〈c, ∅,DΓ〉.

Case (DT-VAR): e ≡ x. Claim holds because ρ ≺C σ
implies ρ(x) • κ ≺C σ(x) ⊔ DΓ.

Case (DT-OP): e ≡ op(e0, e1) where by inversion

Γ, σ ⊢ e0 ⇓ Γ′ | ϑ0 (61)

Γ′, σ ⊢ e1 ⇓ Γ′′ | ϑ1 (62)

holds. Claim holds by definition (4).

Case (DT-ABS): e ≡ λℓx.e. Claim holds by definition (11).

Case (DT-NEW): e ≡ newℓ ep where by inversion

Γ, σ ⊢ ep ⇓ Γ′ | ϑ (63)

holds. Claim holds by definition (11).

Case (DT-APP): e ≡ e0(e1) where by inversion

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉 (64)

Γ′, σ ⊢ e1 ⇓ Γ′′ | ϑ1 (65)

holds. By definition (11) we obtain ∃ℓ ∈ Ξ0 | ξ
ℓ ≺C ℓ.

Subcase ∀ℓ ∈ Ξ0 : ξℓ ≺C ℓ where by inversion

Γ′′[D 7→ DΓ′′ ⊔ D0], σ̇[x 7→ ϑ1] ⊢

e ⇓ Γ′′′ | ϑ
(66)

holds.

Subsubcase 〈Γ′′[D 7→ DΓ′′ ⊔ D0], ϑ1〉 ⊑ F(ℓ)In.

Claim holds by lemma (6) and (2).

Subsubcase 〈Γ′′[D 7→ DΓ′′ ⊔ D0], ϑ1〉 6⊑ F(ℓ)In.

Claim holds by lemma (6) and (7).

Subcase ∀ℓ ∈ Ξ0 : ξℓ 6≺C ℓ Case holds by ∃ℓ ∈
Ξ0 | ξ

ℓ ≺C ℓ and lemma (6) and (7).

Case (DT-GET): e ≡ e0[e1] where by inversion

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉 (67)

Γ′, σ ⊢ e1 ⇓ Γ′′ | 〈str,Ξ1,D1〉 (68)

holds. Claim holds because lemma (4) and definition (11)

implies H′′(ξℓ)(str) ≺C ϑ.

Case (DT-PUT): e ≡ e0[e1] = e2 where by inversion

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉 (69)

Γ′, σ ⊢ e1 ⇓ Γ′′ | 〈str,Ξ1,D1〉 (70)

Γ′′, σ ⊢ e2 ⇓ Γ′′′ | ϑ (71)

holds. Claim holds because lemma (5) and definition (11)

implies H′′′(ξℓ)[str 7→ v : κv] ≺C Γ′′′′.

Case (DT-IFTRUE): e ≡ if (e0) e1, e2 where by inversion

Γ, σ ⊢ e0 ⇓ Γ′ | 〈L0,Ξ0,D0〉 (72)

Γ′[D 7→ DΓ ⊔ D0], σ ⊢ e1 ⇓ Γ′′
1 | ϑ1 (73)

holds. By definition (11) we obtain true ≺C L0.

Subcase L0 = true. Claim holds by inversion.

Subcase L0 = bool. Claim holds by lemma (6) and (7).

Case (DT-IFFALSE): Analogous to case

(DT-IFTRUE).

Case (DT-TRACE): e ≡ traceℓ (e) where by inversion

Γ[D 7→ DΓ ⊔ ℓ], σ ⊢ e ⇓ Γ′ | ϑ (74)

holds. Claim holds by definition (11).

D. Termination

Lemma 10 (Monotonicity). The inference system in Fig. 10

is monotone.

Proof of Lemma 10. We have to show monotonicity, that is,

∀Γ, Γ̃, σ, σ̃, ϑ, ϑ̃, e with Γ ⊑ Γ̃, σ ⊑ σ̃:

Γ, σ ⊢ e ⇓ Γ′ | ϑ ∧ Γ̃, σ̃ ⊢ e ⇓ Γ̃′ | ϑ̃

→ Γ′ ⊑ Γ̃′ ∧ ϑ ⊑ ϑ̃
(75)

The proof is by induction on Γ, σ ⊢ e ⇓ Γ′ | ϑ. It is easy

to see that each rule preserves monotonicity if the recursive

uses of the judgment do so, too.

Lemma 11 (Ascending Chain Condition). For each subject

program, the analysis reaches a finite subset of the partially

ordered set (Analysis Lattice,⊑).

Proof sketch of Lemma 11. Inspection of Fig. 8 shows that

the finiteness of many components of the abstract semantic

domain depend on the finiteness of the number of labels

ℓ in a program. The sole exception is the abstract object,

which is a mapping from lattice values to abstract values.

Because the String sublattice of Lattice Value has infinitely

many values, the domain of abstract objects is infinite and

has infinite height.

We argue that each abstract object only uses a finite num-

ber of its fields by looking at the possible arguments to get

and put properties. Non-⊤ values of String are generated by

constants in the program and by primitive operations applied

to constants. Disregarding recursion, there are only finitely

many such constants and operations, so that only a finite sub-

lattice of Abstract Object is exercised.

Adding recursion does not change this picture because

the function store subsumes function calls. If a call to a

function has a fixed string argument that is different to the

argument of previous calls, then the analysis subsumes these

arguments to ⊤ and analyzes the function body with the

subsumed argument.

Proof of Theorem 3. For each Γ, σ, and e, there exist Γ′

and ϑ such that Γ, σ ⊢ e ⇓ Γ′ | ϑ. The computation

terminates with a fixpoint because all inference rules are

monotone (Lemma 10) and the analysis lattice has finite

height (Lemma 11).

