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Abstract— Non-linear error minimization methods became
widespread approaches for solving the simultaneous localization
and mapping problem. If the initial guess is far away from
the global minimum, converging to the correct solution and
not to a local one can be challenging and sometimes even
impossible. This paper presents an experimental analysis of
dynamic covariance scaling, a recently proposed method for
robust optimization of SLAM graphs, in the context of a poor
initialization. Our evaluation shows that dynamic covariance
scaling is able to mitigate the effects of poor initializations.
In contrast to other methods that first aim at finding a good
initial guess to seed the optimization, our method is more
elegant because it does not require an additional method
for initialization. Furthermore, it can robustly handle data
association outliers. Experiments performed with real world
and simulated datasets show that dynamic covariance scaling
outperforms existing methods, both in the presence and absence
of data association outliers.

I. INTRODUCTION

State estimation and environment modeling are core ca-
pabilities of modern robots and in many state estimation
and environment modeling problems, non-linear optimization
plays a major role. This is, for example, the case in SLAM
and bundle adjustment. Approaches to non-linear optimiza-
tion such as Gauss-Newton, Levenberg-Marquardt, or Dog-
Leg typically seek to find the minimum of the given error
function. However, due to the non-convexity of the error
surface, they cannot guarantee to find the global minimum.
In practice, the initial guess has a strong impact on the
quality of the computed solution. Finding the right solution
can be challenging and sometimes even impossible if the
initial guess is far away from the correct solution.

One of the reasons is that most approaches use lineariza-
tions of the error function around an initial guess to form
the linear system used in the optimization. In case the initial
guess if far away from the global minium, this approximation
is likely to result in a poor solution. An example for that is
illustrated in Figure 1.

There exists few approaches in the context of SLAM that
explicitly address the problem of computing a good initial

All authors except Giorgio Grisetti are with the University of Freiburg,
Institue of Computer Science, 79110 Freiburg, Germany. Giorgio Grisetti is
with the La Sapienza University of Rome, Dept. of Systems and Computer
Science, 00185 Rome, Italy. Cyrill Stachniss is also with the University of
Bonn, Inst. of Geodesy and Geoinformation, 53115 Bonn, Germany.

This work has partly been supported by the European Commission un-
der FP7-600890-ROVINA, ERC-AG-PE7-267686-LIFENAV, by the BMBF
under contract number 13EZ1129B-iView and by the MWK for the project
ZAFL-AAL.

(a) Ground truth (b) Initial guess

(c) Solution of Levenberg-Marquardt
(100 iterations)

(d) Solution of dynamic covariance
scaling (15 iterations)

Fig. 1. A simulated robot (black triangles) equipped with a stereo camera
moves in a grid world and observes features (orange squares). The top row
shows the ground truth and the initialization. Levenberg-Marquardt fails
to compute the optimal solution even after 100 iterations, while dynamic
covariance scaling is able to obtain a close-to-optimal solution within 15
iterations.

guess before optimization. The problem of good initializa-
tion is implicitly addressed by submapping and hierarchical
techniques proposed over the last years in the context of
EKF SLAM and graph-based techniques, for example [2,
6, 10, 19]. Although the motivation for most submapping
techniques was bounding the computational complexity or
online optimization, these techniques often also increase the
robustness of the mapping system. Computing local solutions
and combining them to a global solution can be seen as
computing an improved initial alignment for parts of the
problem. As a result, standard approaches often perform
well when combining the partial solutions into a global
one. Incremental optimization approaches [10, 15, 21] that
optimize the graph at each step can have a similar effect.

Recently, Grisetti et al. [8] addressed the problem of
computing a good initial guess for SLAM and bundle adjust-
ment explicitly. Their approach is also related to submapping



as it partitions the factor graph and solves it locally, but
the key contribution is to compute so-called condensed
measurements (CM) from local solutions. This strategy leads
to good initial configurations so that the original problem can
then be solved with standard optimization approaches.

The contribution of this paper is an analysis of a recently
proposed error minimization approach called dynamic co-
variance scaling (DCS) [1] under poor initial configurations
that can occur in the context of SLAM. DCS was originally
designed for problems that suffer from data association
outliers and its key idea is to automatically re-weight con-
straints that yield a high error. Our analysis suggests that
this approach has also a positive impact on the optimization
in case of poor initial configurations. This positive impact
is caused by the re-weighting as this reduces the influence
of the Jacobians computed far away from the zero-error
configuration. The experimental results presented in this
paper show that DCS solves the optimization problems that
previously required the computation of condensed measure-
ments [8]. The advantage of DCS consists in not relying on
any sophisticated initialization method and at the same time
it naturally handles outliers. The code and the datasets1 used
in this evaluation are publicly available.

II. RELATED WORK

SLAM is an active field of research in robotics and a
large number of approaches has been presented in the past.
There are different ways to address the SLAM problem and
the graph-based formulation, initially proposed by Lu and
Milios [18], is a popular solution these days.

Graph-based approaches model the poses of the robot and
potential features in the environment by nodes in a graph
and encode spatial relations resulting from observations and
controls in the edges. Often, a least squares formulation is
used and different methods have been proposed to minimize
the error introduced by constraints. This includes relax-
ation [12, 7], stochastic gradient descent methods [20, 11],
smoothing [4, 14, 15] and hierarchical techniques [2, 10, 8].

Most approaches assume Gaussian errors in the constraints
of the graph, which are not resilient to outliers, i.e., wrong
constraints between physically different locations. In the
last two years, new approaches have been proposed that
can deal with a substantial number of outliers among the
constraints. The approach of Sünderhauf and Protzel [23,
24] has the ability to scale down the effect of potential
outlier constraints. The scaling variable in their approach,
is computed within the least squares formulation. Related
to that, Olson and Agarwal [22] propose an approach that
can consider multi-modal constraints efficiently. Outliers
constraints can be captured by a Gaussian with a large
variance. The RRR approach by Latif et al. [17] handles
outliers by finding the maximum set of clustered edges that

1The datasets can be downloaded from http://www.
informatik.uni-freiburg.de/˜agarwal/resources/
datasets-icra14-dcs.tar.gz. DCS has been integrated
into g2o and is available through its latest stable at https:
//github.com/RainerKuemmerle/g2o.

are consistent with each other. Compared to [24, 22], RRR
fully rejects potentially wrong constraints while the two other
approaches always maintain outlier constraints with a low
weight. More recently, Agarwal et al. [1] proposed dynamic
covariance scaling (DCS) as an alterative way of handling
constraints.

The initial configuration of the graph to be optimized
can have a strong impact on the final result as the error
minimization procedure may get stuck in local minima. This
holds for pose-graph SLAM as well as for graphs that
contains robot poses and features. The sensor properties
and the choice of the observation function has a strong
impact on the convergence properties. As recently shown
by Grisetti et al. [8], bad initializations quickly lead to
divergence especially in the context of non-linear models.
They propose to employ an approximation of the original
problem that partitions the factor graph with a divide-and-
conquer approach to exploit local estimates. As shown in
their work [8], this offers a larger convergence basin than
Levenberg-Marquardt and yields convergence to the true
solution in real world and simulated scenes where other
state-of-the-art methods fail. Hu et. al. [13] use the Cauchy
M-estimator as a bootstrapper for optimizing datasets with
high-noise but no outliers.

For pose-graphs, Carlone et al. [3] proposed a solution for
finding a linear approximations. These results, however, do
not generalize to graphs with features or with constraints in
3D.

This paper evaluates dynamic covariance scaling (DCS) in
the situations considered by Grisetti et al. [8] and shows that
DCS offers similar convergence properties, without requiring
any condensed measurements, partitioning of the graph, re-
initialization, or similar. We show that DCS is capable of
optimizing non-linear problems with bad initial guesses and
without the need of a special initialization method. We illus-
trate that DCS manages to reach the global minimum in chal-
lenging cases where only special initialization mechanism are
successful. It is important to note that a better initialization,
which is closer to the correct solution, will also result in
a faster convergence with DCS. Note that the integration of
DCS into existing optimization frameworks can be done with
minimal modifications. This allows for optimizing non-linear
problems starting from bad-initial configurations, which was
not easily possible before.

III. OPTIMIZATION WITH DCS

Graph-based SLAM systems aim at finding the config-
uration of the nodes that minimizes the error induced by
observations. Let X = (x1, . . . , xn)T be the state vector
where xi describes the pose of node i. We can describe
the error function eij(X) for a single constraint between
the nodes i and j as the difference between the obtained
measurement zij and the expected measurement f(xi, xj)

eij(X) = f(xi, xj)− zij . (1)

http://www.informatik.uni-freiburg.de/~agarwal/resources/datasets-icra14-dcs.tar.gz
http://www.informatik.uni-freiburg.de/~agarwal/resources/datasets-icra14-dcs.tar.gz
http://www.informatik.uni-freiburg.de/~agarwal/resources/datasets-icra14-dcs.tar.gz
https://github.com/RainerKuemmerle/g2o
https://github.com/RainerKuemmerle/g2o


The error minimization can be written as

X∗ = argmin
X

∑
ij

eij(X)TΩijeij(X), (2)

where Ωij is the information matrix associated to a con-
straint. Eq. 2 is typically solved using Gauss-Newton or
Levenberg-Marquardt and requires to compute a linearization
of the error function eij(X) in each step.

Dynamic covariance scaling or DCS [1] is a recently
proposed method, which was developed to optimize pose
graphs in the presence of outliers. DCS handles outlier
constraints by scaling their information matrix and reducing
their effect during optimization. To achieve this, it replaces
Eq. 2 by:

X∗ = argmin
X

∑
i

ei,i+1(X)TΩi,i+1ei,i+1(X)

+
∑
ij

s2ij eij(X)TΩijeij(X)︸ ︷︷ ︸
χ2
lij

(3)

The first summand in Eq. 3 refers to the constraints from
odometry or incremental scan-matching and the second one
to the loop closing constraints. It obtains increased robustness
by scaling each error term eij with sij or by scaling the
information matrix Ωij with the squared of the scalar s2ij

eDCSij = eij(X)T (s2ijΩij)eij(X) (4)

This reduces the confidence of outlier measurements. The
scaling variable sij is computed as

sij = min

(
1,

2Φ

Φ + χ2
lij

)
, (5)

where Φ is a free parameter. A derivation of the scaling
function and an analysis of the impact of Φ can be found in
our previous work [1].

In practice, DCS has the effect of down-weighting con-
straints with large errors. Close to the zero-error configura-
tion, DCS behaves like a normal squared kernel without any
scaling. As the error increases, DCS scales the information
matrix gradually.

With non-linear problems such as those involving ori-
entations, the linear approximation of the error function
eij(X) is poor if the initial estimate is far away from the
correct solution. DCS mitigates the impact of a poor initial
guess as it optimizes the problem while down-weighting
constraints with large errors. The down-weighted constraints
are those whose estimates are far away from the predicted
measurements.

The final error minimization is carried out using the
Levenberg-Marquardt approach. It leads to a quadratic form,
which is minimized by solving the linear system

(H + λI)∆X∗ = −b, (6)

where H =
∑
ij J

T
ij(s

2
ijΩij)Jij and b =

∑
ij J

T
ij(s

2
ijΩij)eij

are the elements of the quadratic form and Jij is the Jacobian
of the corresponding error function. The term λ is the

(a) Initialization of Victoria-Park with odometry

(b) GN (batch) (c) DCS (batch)

(d) GN (batch): zoom A (e) DCS (batch): zoom A

(f) GN (batch): zoom B (g) DCS (batch): zoom B

Fig. 2. Optimization of the Victoria-Park dataset with range-bearing
measurements. The batch solution without DCS converges to the wrong
solution. The errors in the robot poses are indicated by small loops in
the odometry chain. These are not present when we used DCS. The batch
solutions have a total error of 30, 607.16 compared to an error of 389.78
with DCS. Best results were obtained with Φ = 1.

damping factor of Levenberg-Marquardt and ∆X∗ is the
increment to the graph configuration that minimizes the error
in the current iteration. The solution ∆X∗, which is here
computed using g2o framework [16], is then used to update
the current estimate. More details can be found in the graph-
based SLAM tutorial [9].

IV. EXPERIMENTAL EVALUATION

We have evaluated DCS on both real and simulated
datasets, which were originally evaluated with CM [8]. These



TABLE I
THE RESULTS OBTAINED FOR THE VICTORIA PARK DATASET USING

DIFFERENT OPTIMIZATION METHODS (BATCH MODE).

Method Resulting Error
CM 389
DCS 389.78
Gauss-Newton 30,607.16
Gauss-Newton with Dog-Leg 13,319.25
Levenberg-Marquardt 87,147.58

include Victoria-Park with range-bearing measurements and
simulated 2D and 3D Manhattan world datasets with point
features.

In all experiments, we used the odometry as the initial
guess for the optimization. Figure 1(b) shows the initializa-
tion for a simulated dataset. To obtain a baseline comparison,
we used ground truth initialization followed by the method
under investigation. All errors reported with DCS were com-
puted without the scaling function. Otherwise, DCS would
report errors less than the global minimum after convergence

DCS has one free parameter Φ, which influences the
scaling variable s, In all experiments, we set Φ = 10 unless
otherwise stated, but the optimization works on a wide range
of values for Φ.

This experimental evaluation is designed to show the
positive effect that DCS has on the computed solution in
case of bad initial estimates. We show both, quantitative
and qualitative benefits. We also illustrate the effect of the
parameter Φ on the optimization process.

A. Victoria Park Dataset

The original Victoria Park dataset contains range-bearing
observations of trees, which are used as point landmarks.
It contains a total of 151 landmarks observed from 6,969
poses. This high pose to landmark ratio makes the problem
challenging to converge for batch methods as illustrated in
Figure 2. The batch method with Gauss-Newton without
DCS seems to converge to the correct solution as shown
in Fig. 2(b), but a more detailed analysis reveals that this
is not the case. Figures 2(d) and 2(f) show enlarged parts
for the solution obtained by batch methods. Non-existing
loops appears in the odometry chain, which corresponds to
a local minima in the optimization process. Figures 2(e)
and 2(g) show the correct results obtained with DCS. This
correct result without the small loops can also be verified by
incrementally optimizing the graph which typically comes at
an increased overall computationcal cost.

As depicted in Table I, The total error of the solution
with DCS is 389.78 compared to 30, 607.16 with Gauss-
Newton, 13, 319.25 with Dog-Leg and 87, 147.58 with LM.
The solution obtained with DCS is similar in quality and final
error compared to the CM approach [8]. Table. II shows that
DCS converges to the correct solution for a wide variety
of Φ. F robust-DCS is the χ2 error computed with the robust
kernel. Note that the F robust-DCS cannot be directly compared
to F CM as they use different error function. Thus, we run a
few iterations of DCS setting all sij = 1. This results in using

TABLE II
DCS CONVERGES TO THE CORRECT SOLUTION FOR A RANGE OF

VALUES FOR THE PARAMETER Φ ∈ [0.1, 20].

Φ F DCS F robust-DCS
0.1 389.78 37.01
1.0 389.78 79.97
2.0 389.78 86.97
3.0 389.78 94.10
4.0 389.78 128.17
5.0 389.78 135.34
6.0 1,581.72 513.13
7.0 1,009.15 145.09
8.0 1,009.15 148.74
9.0 1,009.15 152.87

10.0 1,009.15 157.51
20.0 1,009.15 804.95

the identical squared error function as none of the constraints
are scaled. It can also be interpreted as running GN with the
initialization computed by DCS. In our previous work [1],
we also showed that DCS could reject significant number of
data association outliers in the Victoria Park dataset.

B. Simulation Results without Outliers

These experiments are designed to show that our approach
is more robust with respect to the inital guess compared
to Levenberg-Marquardt (LM) and performs similarly to
the condensed measurement approach. The 2D simulated
datasets contain planar range-bearing measurements. The
3D simulated datasets contain depth, disparity, and range-
bearing sensor modalities. These were simulated using
g2o_simulator2d and g2o_simulator3d methods.

Table III summarizes the result of experiments on the
simulated datasets showing the type of dataset (2D or 3D),
its size in terms of robot poses, number of landmarks,
number of constraints, as well as the measurement model
and the final χ2 errors. The measurement model “carte-
sian” describes a sensor that is capable of measuring the
(∆X,∆Y )-position of a landmark in the reference frame
of the observer. “Depth” refers to a sensor that measures
the depth of points in an image plane. Finally, “disparity”
refers to a stereo camera model. F init represents the total χ2

of the initialization, which is performed by composing the
odometry measurements. The landmarks are then initialized
using the first pose-landmark constraint. F ideal is obtained
by running Levenberg-Marquardt (LM) starting with the
ground truth solution as the initial guess, i.e., running LM
on the perfect initialization. F ideal will form our baseline
comparison for correctness of the solution. F LM is the final
error after running LM on the odometry based initialization.
F CM is the result optained by the method of Grisetti et
al. [8] followed by LM. F DCS represents the final error of
the DCS solution. The last column displays the total number
of iterations required by DCS.

Table III shows that by using DCS the optimization always
converges to the correct solution. LM can solve the smaller
3D datasets but as the problem size increases, it is unable to
reach the correct solution. The significant examples are those,
where LM fails to converge to the correct solution but DCS



TABLE III
SUMMARY OF THE COMPARISON EXPERIMENTS BETWEEN LM, CM, AND DCS.

Dataset #constraints Sensor model F init F ideal F LM F CM F DCS #DCS-iters
A (2D) 1229 cartesian 25137.90 1706.69 1706.69 1709.69 1706.76 5
B (2D) 10223 cartesian 366551.00 18079.25 18079.25 18079.25 18079.39 5
C (2D) 105399 cartesian 1.26742e+09 205207.54 205207.54 205206.32 205206.35 7
D (2D) 534688 cartesian 1.79237e+10 1056677.58 1056677.58 1056677.58 1056677.58 10
E (3D) 226 depth 4706.70 116.91 116.91 116.91 116.91 6
E (3D) 226 disparity 6300.35 115.77 115.77 115.77 115.77 6
F (3D) 1809 depth 4.22496e+06 2988.96 2988.96 2988.96 3275.75 20
F (3D) 1809 disparity 1.40376e+07 2936.47 8038.63 2936.47 4309.50 20
G (3D) 19267 depth 1.72095e+11 43531.55 16418112.01 43531.54 43628.92 10
G (3D) 19267 disparity 4.53128e+11 43499.34 10181039.20 43499.35 43968.83 15
H (3D) 96659 depth 3.67085e+13 260937.23 4547959956.76 260937.23 261210.85 17
H (3D) 96659 disparity 2.42777e+12 261054.82 1051509415.61 261008.57 3172216.34 39

TABLE IV
DCS PERFORMANCE WITH A DIFFERENT NUMBERS OF OUTLIERS

(PERCENTAGE OF OUTLIERS W.R.T. THE TOTAL NUMBER OF

OBSERVATIONS). Y=RIGHT SOLUTION; N=WRONG MINIMA.

Dataset Sensor model #Constraints 5% 10% 25% 30%
C (2D) cartesian 105399 Y Y N N
D (2D) cartesian 534688 Y Y N N
G (3D) depth 19267 Y Y Y N
G (3D) disparity 19267 Y Y Y N

does. These include the larger 3D depth and disparity-based
datasets. Note that the CM approach of Grisetti et al. [8]
followed by LM always converges to the correct solution as
DCS does. DCS, however, has the advantage over CM to not
require an initialization technique that is different from the
optimization method. In addition, DCS can also deal with
data association outliers while CM cannot (compare [8, 1]).

C. Simulation Results in the Presence of Outliers

With the final experiment we want to show that DCS
can deal with a substantial number of outliers, even for the
more difficult optimization problems. Although the focus of
this paper is not about robustness with respect to outliers,
we evaluated how DCS was able to reject outliers in cases
where LM could not optimize problems, even with zero
outliers. Table IV summarizes our results when adding up
to 30% outliers to the simulated datasets. We created the
outliers by adding wrong constrains randomly between robot
and landmark positions. The last four columns represent
error percentage of false constraints added. “Y” represents
a success and “N” represents failure. Note than LM was
unable to converge to the correct solutions for the depth
and disparity 3D-datasets G, even without outliers. For these
challenging datasets, DCS converges to the correct solution
even with 25% outlier constraints.

D. Influence of Φ on the Optimization

The next experiment is designed to illustrate the effect
of the parameter Φ on the optimization process. In all
experiments before, we set Φ to 10. It turns out that DCS
converges for a large range of values for Φ, but it has an
impact in the number of iterations needed. Figure 3 illustrates

this behavior. The number of iterations required to reach the
global minimum decreases with an increase in Φ. This does
not scale arbitrarily since as Φ→∞, DCS behaves like the
original squared kernel.

E. Computation Cost

The computation time per iteration of all optimization
methods used here is dominated by the sparse Cholesky
factorization. The only overhead that DCS creates over LM
is computing the scaling coefficient in each error function.
This does not lead to any measurable increase in runtime.

V. CONCLUSION

The initial guess can have a substantial impact on the so-
lution found by non-linear error minimization methods such
as Gauss-Newton or Levenberg-Marquardt. We evaluated the
dynamic covariance scaling method, a recent technique for
solving SLAM problems with data association outliers, on
SLAM-graphs with poor initial estimates. Our experiments
suggest that dynamic covariance scaling is more resilient
and robust to bad initial configurations compared than the
standard use of Levenberg-Marquardt and Gauss-Newton
for optimization. Our method can solve complex non-linear
problems without the need of additional initialization mech-
anisms and without increasing the computational cost per
iteration.
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