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Abstract In this paper, we address the problem of lifelong

map learning in static environments with mobile robots us-

ing the graph-based formulation of the simultaneous local-

ization and mapping problem. The pose graph, which stores

the poses of the robot and spatial constraints between them,

is the central data structure in graph-based SLAM. The size

of the pose graph has a direct influence on the runtime and

the memory complexity of the SLAM system and typically

grows over time. A robot that performs lifelong mapping in

a bounded environment has to limit the memory and com-

putational complexity of its mapping system. We present a

novel approach to prune the pose graph so that it only grows

when the robot acquires relevant new information about the

environment in terms of expected information gain. As a re-

sult, our approach scales with the size of the environment

and not with the length of the trajectory, which is an impor-

tant prerequisite for lifelong map learning. The experiments

presented in this paper illustrate the properties of our method

using real robots.

Keywords SLAM · Mapping · Expected Information Gain

1 Introduction

Maps of the environment are needed for a wide range of

robotic applications, including transportation tasks and many

service robotic applications. Therefore, learning maps is re-

garded as one of the fundamental problems in mobile robotics.

In the last two decades, several effective approaches for learn-

ing maps have been developed. The graph-based formula-

tion of the simultaneous localization and mapping (SLAM)
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problem models the poses of the robot as nodes in a graph.

Spatial constraints between poses resulting from observa-

tions or from odometry are encoded in the edges between the

nodes. Graph-based approaches such as [6, 9, 19], which are

probably the most efficient techniques at the moment, typ-

ically marginalize out the features (or local grid maps) and

reduce the mapping problem to trajectory estimation with-

out prior map knowledge. Therefore, the underlying graph

structure is often called the pose graph.

The majority of the approaches, however, assumes that

map learning is carried out as a preprocessing step and that

the robot later on uses the model for tasks such as local-

ization and path planning. A robot that is constantly updat-

ing the map of its environment has to address the so-called

lifelong SLAM problem. This problem cannot be handled

well by most graph-based techniques since the complexity

of these approaches grows with the length of the trajectory.

As a result, the memory as well as the computational re-

quirements grow over time and therefore these methods can-

not be applied to lifelong SLAM.

The contribution of this paper is a novel approach that

enables graph-based SLAM approaches to operate in the

context of lifelong map learning in static scenes. Our ap-

proach is orthogonal to the underlying graph-based mapping

technique and applies an entropy-driven strategy to prune

the pose graph while minimizing the loss of information.

This becomes especially important when re-traversing al-

ready mapped areas. As a result, our approach scales with

the size of the environment and not with the length of the tra-

jectory. It should be noted that not only long-term mapping

systems benefit from our method. Even traditional mapping

systems are able to compute a map faster since less resources

are claimed and less comparisons between observations are

needed to solve the data association problem. We further-

more illustrate that the resulting grid maps are less blurred

compared to the maps built without our approach.
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2 Related Work

There is a large variety of SLAM approaches available in the

robotics community. Common techniques apply extended

and unscented Kalman filters [11, 13], sparse extended in-

formation filters [3, 23], particle filters [8, 15], and graph-

based, least squares error minimization approaches [6, 9, 14,

19].

Graph-based SLAM approaches to estimate maximum-

likelihood maps are often regarded as the most effective

means to reduce the error in the pose graph. Lu and Mil-

ios [14] were the first to refine a map by globally optimiz-

ing the system of equations to reduce the error introduced

by constraints. Since then, a large variety of approaches for

minimizing the error in the constraint network have been

proposed. Duckett et al. [2] use Gauss-Seidel relaxation. The

multi-level relaxation (MLR) approach by Frese et al. [6] ap-

ply relaxation at different spatial resolutions. Given a good

initial guess, it yields very accurate maps particularly in flat

environments. Folkesson and Christensen [5] define an en-

ergy function for each node and try to minimize it. Thrun

and Montemerlo [22] apply variable elimination techniques

to reduce the dimensionality of the optimization problem.

Olson et al. [19] presented a fast and accurate optimization

approach which is based on the stochastic gradient descent

(SGD). Compared to approaches such as MLR, it still con-

verges from a worse initial guess. Based on Olson’s op-

timization algorithm, Grisetti et al. [9] proposed a differ-

ent parameterization of the nodes in the graph. The tree-

based parameterization yields a significant boost in perfor-

mance. In addition to that, the approach can deal with arbi-

trary graph topologies. The approach presented in this paper

is built upon the work by Grisetti et al. [9].

Most graph-based approaches available today do not pro-

vide means to efficiently prune the pose graph, that has to be

corrected by the underlying optimization framework. Most

approaches can only add new nodes or apply a rather sim-

ple decision whether to add a new node to the pose graph

or not (such as the question of how spatially close a node

is to an existing one). However, there are some notable ex-

ceptions: Folkesson and Christensen [5] combine nodes into

so-called star nodes which then define rigid local submaps.

The method applies delayed linearization of local subsets of

the graph, permanently combining a set of nodes in a relative

frame. Related to that, Konolige and Agrawal [12] subsam-

ple nodes for the global optimization and correct the other

nodes locally after global optimization.

Other authors considered the problem of updating a map

upon changes in the environment. For example, Biber and

Duckett [1] propose an approach to update an existing model

of the environment. They use five maps on different time

scales and incorporate new information by forgetting old in-

formation. Related to that, Stachniss and Burgard [20] learn

clusters of local map models to identify typical states of the

environment. Both approaches focus on modeling changes

in the environment but do not address the full SLAM prob-

lem since they require an initial map to operate. The ap-

proach presented in this paper further improves the node

reduction techniques for graph-based SLAM by estimating

how much the new observation will change the map. It ex-

plicitely considers the expected information gain of obser-

vations to decide whether the corresponding nodes should

be removed from the graph or not.

In the remainder of this paper, we will first introduce

the basic concept of pose graph optimization originally pre-

sented in [9]. In Section 4, we describe our contribution to

information-driven node reduction. In Section 5, we finally

presents our experimental evaluation.

3 Map Learning using Pose Graphs

The graph-based formulation of the SLAM problem models

the poses of the robot as nodes in a graph (a so-called pose

graph). Spatial constraints between poses resulting from ob-

servations or from odometry are encoded in the edges be-

tween the nodes. Most approaches to graph-based SLAM fo-

cus on estimating the most-likely configuration of the nodes

and are therefore referred to as maximum-likelihood (ML)

techniques. The approach presented in this paper also ap-

plies an optimization framework that belongs to this class of

methods.

3.1 Problem Formulation

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. Let x = (x1 · · · xn)
T be a vector of pa-

rameters which describes a configuration of the nodes. Let δ ji

and Ω ji be respectively the mean and the information matrix

of an observation of node j seen from node i. Let f ji(x) be

a function that computes a zero noise observation according

to the current configuration of the nodes j and i.

Given a constraint between node j and node i, we can

define the error e ji introduced by the constraint as

e ji(x) = f ji(x)−δ ji (1)

as well as the residual r ji = −e ji(x). Let C be the set of

pairs of indices for which a constraint δ exists. The goal

of a ML approach is to find the configuration of the nodes

that minimizes the negative log likelihood of the observa-

tions. Assuming the constraints to be independent, this can

be written as

x∗ = argmin
x

∑
〈 j,i〉∈C

r ji(x)
T Ω jir ji(x). (2)
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3.2 Map Optimization

To solve Eq. (2), different techniques can be applied. Our

work applies the approach of Grisetti et al. [9] which is an

extention of the work of Olson et al. [19]. Olson et al. [19]

propose to use a variant of the preconditioned stochastic gra-

dient descent (SGD) to compute the most likely configura-

tion of the nodes in the network. The approach minimizes

Eq. (2) by iteratively selecting a constraint and by moving

the nodes of the pose graph in order to decrease the error

introduced by the selected constraint. Compared to the stan-

dard formulation of gradient descent, the constraints are not

optimized as a whole but individually. The nodes are up-

dated according to the following equation:

xt+1 = xt +λ ·H−1JT
jiΩ jir ji (3)

Here, x is the set of variables describing the locations of the

poses in the network and H−1 is a preconditioning matrix.

J ji is the Jacobian of f ji, Ω ji is the information matrix cap-

turing the uncertainty of the observation, r ji is the residual,

and λ is the learning rate which decreases with the iteration.

For a detailed explanation of Eq. (3), we refer the reader

to [9] or [19].

In practice, the algorithm decomposes the overall prob-

lem into many smaller problems by optimizing subsets of

nodes, one subset for each constraint. Whenever a solution

for one of these subproblems is found, the network is up-

dated accordingly. Obviously, updating the constraints one

after each other can have antagonistic effects on the corre-

sponding subsets of variables. To avoid infinite oscillations,

one uses the learning rate λ to reduce the fraction of the

residual which is used for updating the variables. This makes

the solutions of the different sub-problems converge asymp-

totically to an equilibrium point which is the solution re-

ported by the algorithm.

3.3 Tree Parameterization for Efficient Map Optimization

The poses p = {p1, . . . , pn} of the nodes define the configu-

ration of the graph. The poses can be described by a vector

of parameters x such that a bidirectional mapping between p

and x exists. The parameterization defines the subset of vari-

ables that are modified when updating a constraint in SGD.

An efficient way of parameterizing the nodes is to use a tree.

To obtain that tree, we compute a spanning tree from the

pose graph. Given such a tree, one can define the parameter-

ization for a node as

xi = pi − pparent(i), (4)

where pparent(i) refers to the parent of node i in the spanning

tree. As shown in [9] this approach can dramatically speed

up the convergence rate compared to the method of Olson

et al. [19].

The technique described so far is typically executed as

a batch process but there exists also an incremental vari-

ant [10] which performs the optimization only on the por-

tions of the graph which are affected by the introduction of

new constraints. It is thus able to re-use the previously gen-

erated solutions to compute the new one.

3.4 The SLAM Front-end

The approach briefly described above only focuses on cor-

recting a pose graph given all constraints and is often re-

ferred to as the SLAM back-end. In contrast to that, the

SLAM front-end aims at extracting the constraints from sen-

sor data. In this paper, we build our work upon the SLAM

front-end described in the Ph.D. thesis of Olson [17]. We

refer to this technique as “without graph reduction”. The

front-end generates a new node every time the robot travels a

minimum distance. Every node is labeled with the laser-scan

acquired at that position. Constraints between subsequent

nodes are generated by pairwise scan-matching. Every time

a new node is added, the front-end seeks for loop closures

with other nodes. It therefore approximates the conditional

covariances of all nodes with respect to the newly added

node using the technique described in [25]. Once these co-

variances are computed, the approach selects a set of can-

didate loop closures using the χ2 test. The corresponding

edges are then created by aligning the current observations

with the ones stored in each candidate loop closing node de-

termined by the previous step. In addition to that, the front-

end applies an outlier rejection technique based on spectral

clustering [18] to reduce the risk of wrong matches.

The contribution of this paper is a technique that “sits”

between the SLAM front-end and the optimizer, the SLAM

back-end, in order to enable a robot to perform lifelong map

learning in static worlds. It allows for removing redundant

nodes by considering the expected information gain of the

observations. As we will show in the remainder of this pa-

per, our method allows for efficient map learning especially

in the context of frequent re-traversals of previously mapped

areas. In addition to that, we illustrate that this technique im-

proves the map quality when learning grid maps and that

it generates sharp boundaries between free and occupied

spaces.

4 Our Approach to Lifelong Map Learning

In the context of lifelong map learning, a robot cannot add

new nodes to the graph whenever it is re-entering already

visited terrain. The key idea of our approach is to prune the

graph structure to limit the number of nodes. Most of the
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existing approaches to graph reduction simply consider the

position of a potential new node and do not integrate it into

the graph if it is spatially close to an existing node [4, 12].

In this paper, we propose a different, information-driven ap-

proach to node reduction. In contrast to considering poses

only, we estimate the expected amount of information which

an observation contributes to the belief of the robot.

Most robotics systems that apply graph-based mapping

approaches eventually convert the pose graph into another

data structure to represent the environment for tasks such as

path planning. In this context, popular models are occupancy

grid maps [16, 24] and feature maps. Therefore, we consider

the effects of the node reduction technique on the resulting

occupancy grid map.

4.1 Information-Theoretic Node Reduction

Our approach uses the expected information gain, which is

defined as the expected reduction of uncertainty in the be-

lief of the robot caused by an observation. Entropy H is a

general measure for uncertainty in the belief over a random

variable x. For a discrete probability distribution, entropy is

given by

H (p(x)) =−∑
x

p(x) log2 p(x). (5)

In theory, the entropy has to be computed over the full SLAM

posterior, thus taking into account the pose and the map un-

certainty. In our case, however, we aim at discarding obser-

vations when re-traversing known areas. If the robot per-

forms a re-traversal, it has already identified loop-closing

constraints that caused a pose correction carried out by the

optimization framework. Therefore, the nodes which are dis-

carded typically have a minor effect on the pose uncertainty

itself which is why the relevant part of the uncertainty is

given by the map uncertainty. To put this in other words, the

optimization framework is a maximum likelihood estimator

and its estimate is the node arrangement. Given this arrange-

ment, the map can be computed directly and thus the entropy

as well. For a grid map, the entropy is given by

H(p(m)) = ∑
c∈m

H(p(c)) (6)

=− ∑
c∈m

(

p(c) log2 p(c)+ p(¬c) log2 p(¬c)
)

,

where c refers to the individual cells of the grid map m, and

p(c) refers to the estimated probability that the cell c is oc-

cupied [21]. Based on the entropy, we can define the infor-

mation gain of an observation zi with respect to a grid cell c

as

Ic(zi) = H
(

p(c | z1:t \{zi})
)

−H
(

p(c | z1:t)
)

, (7)

where z1:t refers to the set of all laser measurements in the

graph which have not yet been removed. Consequently, for

a grid cell c, the expected information gain of an observa-

tion zi is given by

E[Ic(zi)] = Ic(zi = occupied)p(c | z1:t \{zi}) (8)

+ Ic(zi = free)p(¬c | z1:t \{zi}). (9)

Finally, summing over all grid cells yields the expected in-

formation gain of an observation zi with respect to the entire

grid map:

E[I(zi)] = ∑
c∈m

E[Ic(zi)] (10)

A key idea of our approach is to discard all observations

and the corresponding nodes in the graph whose expected

information gain is smaller than a threshold. Note that our

approach does not make its decision for the most recent

observation only. In contrast, it also considers old observa-

tions for removal, i. e., in each step, our algorithm considers

the expected information gain of all measurements z1:t . In

practice, however, the sensor of the robot only has a limited

range. We therefore compute the expected information gain

only for those nodes which were recorded in the vicinity of

the current robot position. We remove observations until the

one with the lowest expected information gain has a value

greater than the threshold.

In this section, we described how to identify nodes in the

graph corresponding to measurements that can be discarded

minimizing the loss of relevant information. In the next sec-

tion, we describe how to prune the graph while preserving

most of the information encoded in the edges.

4.2 Updating the Graph

To remove a node i from the graph structure while preserv-

ing the global behavior of the error function, we need to aug-

ment the graph with edges between each pair of neighbors of

the node i. This is a well known effect of the marginalization

of Gaussian distributions.

When removing a node which has k neighbors, the total

number of edges can grow by up to 1
2
k(k− 1)− k. This in-

troduces a complexity which is not suited for lifelong map

learning. An illustration of the graph update is depicted in

the left and middle illustration of Figure 1.

Therefore, we propose an alternative way of removing a

node which is an approximate solution but which does not

increase the size of the graph. Let i be the node to be re-

moved and N be the set of neighbors of i. The key idea of

our method is to select one node j ∈ N and merge the infor-

mation of all edges connecting i into existing as well as new

edges connecting j. This results in removing all k edges at i
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i j j j

Fig. 1 Left: Graph built according to the observations. Middle: Exactly marginalized but densely connected graph after removing node i. Right:

Approximate solution obtained by collapsing the edges at i into node j.

and in adding (k−1) edges between j and N\{ j}. If this re-

sults in two edges connecting the same two nodes j and one

of its neighbors, these edges can directly be merged (see also

Figure 1, right). Consequently, the overall number of edges

always decreases at least by 1.

Merging the information encoded in the edges can be

done in a straight forward manner since the edges encode

Gaussian constraints. Thus, concatenating two constraints

with means δ ji and δk j and information matrices Ω ji and

Ωk j is done by

δki = δ ji ⊕δk j (11)

Ωki =
(

Ω−1
ji +Ω ′−1

k j

)−1

, (12)

where Ω ′−1
k j is the covariance matrix obtained by applying

the transformation δ ji to Ω−1
k j .

Similar to that, merging two constraints δ 1
i j and δ 2

i j be-

tween nodes j and i is done by

δ ji = Ω−1
ji (Ω

(1)
ji δ

(1)
ji +Ω

(2)
ji δ

(2)
ji ) (13)

Ω ji = Ω
(1)
ji +Ω

(2)
ji . (14)

To collapse a node i into one of its neighbors, one could

select, in theory, an arbitrary node j ∈ N. However, the se-

lection of the node j can have a significant influence on the

resulting map that will be obtained. The reason for that is

the underlying optimization framework. Most existing ap-

proaches assume Gaussian observations (the edges represent

Gaussians) although this assumption may not hold in prac-

tice. In addition to that, some optimization systems assume

roughly spherical covariances to exhibit maximum perfor-

mance. Thus, it is desirable to avoid long edges to limit the

effect of linearization errors. Our approach therefore con-

siders all neighbors j ∈ N and selects the one such that the

sum of the lengths of all edges in the resulting graph is min-

imized:

j∗ = argmin
j∈N

∑
e∈G (i→ j)

length(e), (15)

In Eq. (15), G (i → j) refers to the graph that results when

collapsing node i into node j. Furthermore, length(e) refers

to the norm of the translational part of e. Note that in prac-

tice, only the edges at i and those at j need to be involved in

the computation and not the entire graph.

4.3 Gamma Index

To evaluate how densely connected a pruned pose graph is in

practice, we will evaluate real world data sets using the so-

called gamma index [7]. The gamma index (γ) is a measure

of connectivity of a graph. It is defined as the ratio between

the number of existing edges and the maximum number of

possible edges. It is given by

γ =
e

1
2
v(v−1)

, (16)

where e is the number of edges and v is the number of nodes

in the graph. The gamma index varies from 0 to 1, where 0

means that the nodes are not connected at all and 1 means

that the graph is complete.

As we will show in the experiments, our approach leads

to a small and more or less constant gamma index, below

0.01 (in all our datasets). In contrast to that, the sound prun-

ing strategy tends towards much higher gamma values.

5 Experimental Evaluation

We carried out the experimental evaluation of this work at

the University of Freiburg using a real ActivMedia Pioneer-2

robot equipped with a SICK laser range finder and running

CARMEN. In addition to that, we considered a dataset that

is frequently used in the robotics community to evaluate

SLAM algorithms, namely the Intel Research dataset pro-

vided by Dirk Hähnel.

5.1 Runtime

The experiments in this section are designed to show that our

approach to informed graph pruning is well suited for robot

mapping – for lifelong map learning as well as for standard

SLAM. In the first set of experiments, we present an analy-

sis of how the graph structure and thus the runtime increases

when a robot constantly re-traverses already mapped areas.

We compare the results of a graph-based optimization ap-

proach [9] in combination with a re-implementation of Ol-

son’s SLAM front-end [17] to our novel method (using the

same front-end and back-end).

In the experiment presented in Figure 2, the robot was

constantly re-visiting already known areas. It traveled forth
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Fig. 2 Typical results of an experiment in which the robot moves in already visited areas. Left: Runtime per observation for the standard approach

(blue) and for our method (red). Middle and right: Number of nodes and edges in the graph for both methods. Due to time reasons, the experiment

for the standard approach was aborted after around 3500 observations.
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Fig. 3 Results obtained by a robot moving at Freiburg University,

building 079, repeatedly visiting the individual rooms and the corri-

dor. Top map image: standard approach without graph pruning. Bottom

map image: our approach.

and back 100 times in an approximately 20 m long corri-

dor in our lab environment. This behavior leads to a run-

time explosion for the standard approach. Please note that

this is not caused by the underlying optimization framework

(which is executed in a few milliseconds) but by the SLAM

front-end that looks for constraints between the nodes in the

graph considering all previously recorded scans. In contrast

to that, our approach keeps the number of nodes in the graph

more or less constant and thus avoids the runtime explosion.

In an additional experiment, the robot repeatedly visited

different rooms and the corridor in our lab. Figure 3 shows

the resulting maps as well as the effect of the graph sparsifi-

cation. In sum, this experiment yields similar results than in

the previous experiment.

Fig. 4 Robot moving 100 times forth and back in the corridor. Stan-

dard grid-based mapping approaches (top) tend to generate thick and

blurred walls whereas our graph sparsification (bottom) does not suffer

from this issue.

5.2 Improved Grid Map Quality by Information-driven

Graph Sparsification

The second experiment is designed to illustrate that our ap-

proach has a positive influence on the quality of the resulting

grid map. In contrast to feature-based approaches, grid maps

have one significant disadvantage when it comes to lifelong

map learning. Whenever a robot re-enters a known region

and uses scan-matching, the chance of making a small align-

ment error is nonzero. After the first error, the probability

of making further errors increases since the map the robot

aligns its observation with already has a (small) error. In the

long run, this is likely to lead to divergence or at least to

artificially thick walls and obstacles.

This effect, however, is significantly reduced when ap-

plying our graph sparsification technique since scans are

only maintained as long as they provide relevant informa-

tion, otherwise, they are discarded. To illustrate this effect,

consider Figure 4. The top image shows the result of 100

corridor traversals without graph sparsification. The thick

and blurred walls as a result of the misaligned poses are

clearly visible. In contrast to that, the result obtained by our

approach does not suffer from this problem (bottom image).

The same effect can also be observed in the magnified areas

in Figure 3.
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Fig. 6 Map and graph obtained from the Intel Research Lab dataset by using the standard (left) as well as by full marginalization (middle) and

by using our approach (right). Standard approach: 1802 nodes, 3916 edges, full marginalization: 349 nodes, 13052 edges, our approach with

approximate marginalization: 354 nodes, 559 edges.
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Fig. 5 Evolution of the gamma index (Intel Research Lab).

5.3 Approximate Graph Update

We furthermore compared the effects of our approximate

graph update routine versus full marginalization of the nodes

(see Figure 1 for an illustration). As discussed in Section 4.2,

our node removal technique is guaranteed to also decrease

the number of edges in the graph. In contrast to this, full

marginalization typically leads to densely connected graphs.

This effect can be observed in real world data such as

the Intel Research Lab, see Figure 5. This figure shows the

gamma indices of both graphs. As can be seen, the graph

structure obtained with our approach is and stays compara-

bly sparse. The corresponding graphs as well as the graph

obtained by the standard approach are depicted in Figure 6.

This sparsity achieved by our approach has two advan-

tages: First, the underlying optimization method depends

linearly on the number of edges in the graph. Thus, having

less edges results in a faster optimization. Second, after mul-

tiple node removals using full marginalization, it is likely

that also spatially distant nodes are connected via an edge.

As mentioned in Section 5.2, these long distant edges can be

suboptimal for the underlying optimization engine (as this is

the case for [9]).

6 Conclusion

In this paper, we presented a novel approach that allows for

lifelong map learning in static scenes. It is designed for mo-

bile robots that use a graph-based framework to solve the

simultaneous localization and mapping problem. By con-

sidering the expected information gain of observations, our

method removes redundant information from the graph and

in this way keeps the size of the pose-constraint network

constant as long as the robot traverses already mapped areas.

We introduce an approximate way to prune the graph struc-

ture that enables us to limit the complexity and allows for

highly efficient robotic map learning. The approach has been

implemented and thoroughly tested with real robot data. We

provided real world experiments and considered standard

benchmark datasets used in the SLAM community to illus-

trate the advantages of our methods.

Note that even though this paper describes only 2D ex-

periments generated based on a 2D implementation of the

work, the extension to 3D should be straightforward. Given

a local 3D grid (or a more efficient representation such as an

octree), the entropy and thus the expected information gain

can be computed in the same way. Furthermore, the approx-

imate marginalization is directly applicable to any kind of

constraint network. Therefore, we believe that the approach

can be directly applied to 3D data even though we have not

done this so far.

Acknowledgements We would like to thank Dirk Hähnel for provid-

ing the Intel Research Lab dataset. This work has partly been supported

by the German Research Foundation (DFG) under contract number

SFB/TR-8 and by the European Commission under contract number

FP7-ICT-231888-EUROPA.



8

References

1. P. Biber and T. Duckett. Dynamic maps for long-term operation of

mobile service robots. In Proc. of Robotics: Science and Systems

(RSS), pages 17–24, 2005.

2. T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of

globally consistent maps. Autonomous Robots, 12(3):287 – 300,

2002.

3. R. Eustice, H. Singh, and J. Leonard. Exactly sparse delayed-state

filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 2428–2435, 2005.

4. R. Eustice, H. Singh, and J. Leonard. Exactly Sparse Delayed-

State Filters for View-Based SLAM. IEEE Transactions on

Robotics, 22(6):1100–1114, 2006.

5. J. Folkesson and H. Christensen. Graphical slam - a self-correcting

map. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2004.

6. U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation al-

gorithm for simultaneous localisation and mapping. IEEE Trans-

actions on Robotics, 21(2):1–12, 2005.

7. W. L. Garrison and D. F. Marble. A prolegomenon to the forecast-

ing of transportation devel., 1965.

8. G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE Trans-

actions on Robotics, 23(1):34–46, 2007.

9. G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood

maps using gradient descent. In Proc. of Robotics: Science and

Systems (RSS), 2007.

10. G. Grisetti, D. L. Rizzini, C. Stachniss, E. Olson, and W. Bur-

gard. Online constraint network optimization for efficient maxi-

mum likelihood map learning. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2008.

11. S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach

for filtering nonlinear systems. In Proc. of the American Control

Conference, pages 1628–1632, 1995.

12. K. Konolige and M. Agrawal. Frameslam: From bundle adjust-

ment to real-time visual mapping. IEEE Transactions on Robotics,

24(5):1066–1077, 2008.

13. J. Leonard and H. Durrant-Whyte. Mobile robot localization by

tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.

14. F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.

15. M. Montemerlo and S. Thrun. Simultaneous localization and map-

ping with unknown data association using FastSLAM. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), pages

1985–1991, 2003.

16. H. Moravec and A. Elfes. High resolution maps from wide angle

sonar. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 116–121, St. Louis, MO, USA, 1985.

17. E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT,

Cambridge, MA, USA, June 2008.

18. E. Olson, M. Walter, J. Leonard, and S. Teller. Single cluster graph

partitioning for robotics applications. In Proceedings of Robotics

Science and Systems, pages 265–272, 2005.

19. E. Olson, J. Leonard, and S. Teller. Fast iterative optimization

of pose graphs with poor initial estimates. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 2262–2269,

2006.

20. C. Stachniss and W. Burgard. Mobile robot mapping and localiza-

tion in non-static environments. In Proc. of the National Confer-

ence on Artificial Intelligence (AAAI), pages 1324–1329, 2005.

21. C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based

exploration using rao-blackwellized particle filters. In Proc. of

Robotics: Science and Systems (RSS), pages 65–72, Cambridge,

MA, USA, 2005.

22. S. Thrun and M. Montemerlo. The graph SLAM algorithm with

applications to large-scale mapping of urban structures. The Inter-

national Journal of Robotics Research, 25(5-6):403, 2006.

23. S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and

H. Durrant-Whyte. Simultaneous localization and mapping with

sparse extended information filters. Int. Journal of Robotics Re-

search, 23(7/8):693–716, 2004.

24. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT

Press, Cambridge, MA, USA, 2005.

25. G. D. Tipaldi, G. Grisetti, and W. Burgard. Approximated co-

variance estimation in graphical approaches to slam. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2007.


