
Which Landmark is Useful?

Learning Selection Policies for Navigation in Unknown Environments

Hauke Strasdat Cyrill Stachniss Wolfram Burgard

Abstract— In general, a mobile robot that operates in un-
known environments has to maintain a map and has to
determine its own location given the map. This introduces
significant computational and memory constraints for most
autonomous systems, especially for lightweight robots such
as humanoids or flying vehicles. In this paper, we present a
novel approach for learning a landmark selection policy that
allows a robot to discard landmarks that are not valuable for
its current navigation task. This enables the robot to reduce
the computational burden and to carry out its task more
efficiently by maintaining only the important landmarks. Our
approach applies an unscented Kalman filter for addressing
the simultaneous localization and mapping problems and uses
Monte-Carlo reinforcement learning to obtain the selection
policy. Based on real world and simulation experiments, we
show that the learned policies allow for efficient robot naviga-
tion and outperform handcrafted strategies. We furthermore
demonstrate that the learned policies are not only usable
in a specific scenario but can also be generalized towards
environments with varying properties.

I. INTRODUCTION

In recent years, there has been a trend towards embedded

systems in robotics. A series of such approaches deal with

autonomous cars, helicopters, blimps, underwater vehicles,

and wheeled or humanoid robots. As embedded systems

typically have much higher limitations with respect to the

computational power and memory capacity, it is important

in the context of embedded systems to develop efficient

algorithms that scale with the computational constraints of

the underlying hardware.

In robotics, one of the core capabilities needed for the

majority of applications is autonomous navigation. For truly

autonomous navigation in initially unknown environments,

the robot has to solve the so-called simultaneous localization

and mapping (SLAM) problem [2, 12, 19]. Solving the

SLAM problem, however, is computationally demanding

and the memory requirements increase with the number

of landmarks that need to be maintained by the robot. In

practice, there are many scenarios in which the number of

visible landmarks during a navigation task is significantly

larger than the number of landmarks which can be processed

efficiently using an embedded device. This leads to the

question which landmark should be stored and maintained by

the robot to optimally solve the navigation task. A landmark

is only useful if it contributes to keep an accurate pose
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estimate of the robot at the right time and in such a way that it

is valuable for the navigation task. In this paper, we present

an approach for learning a landmark selection policy that

optimizes the navigation task carried out by the robot given

its computational or memory constraints. It is obvious that

the utility of a landmarks depends on the type of navigation

task. We analyze two types of navigation tasks: A single-

goal navigation task and a round-trip navigation task where

subgoals are visited more then once. One major advantage

of our approach is that the policies are not limited to the

environment they have been learned in. Rather, they can

also be applied successfully in environments with different

properties of the underlying landmark distribution.

This paper is organized as follows. After a discussion of

related work, Section III briefly introduces the unscented

Kalman filter and its application to SLAM as well as re-

inforcement learning. Section IV then describes the different

navigation tasks considered in this paper. After that, we in-

troduce our approach to learn the optimal landmark selection

policy. Finally, we present experimental results carried out

in simulation as well as on a real wheeled robot.

II. RELATED WORK

The standard method for SLAM relies on the extended

Kalman filter (EKF) [11] or its variants such as the unscented

Kalman filter (UKF) [7]. Using these approaches, the com-

putational requirement and memory demand increase with

the number of landmarks since the full correlation between

the position all landmarks is taken into account. There are

many approximative filtering techniques for SLAM [12,

19]. These methods do not incorporate the full correlation

between the landmarks, so that the computational constraints

are less restrictive. However, their memory demand increases

at least linearly with the number of landmarks used.

Recently, Sala et al. [15] presented a graph-theoretic

formulation for the selection problem of visual features to

perform navigation in known environments. The optimal

set of features is defined as the minimal set with which

navigation is possible. Zhang et al. [20] proposed an entropy-

based landmark selection method for SLAM. This method

specifies a measure about which visible landmark is best in

the sense of entropy reduction. However, it only provides a

vague guideline for how many features should be selected

at a given point in time. Furthermore, Lerner et al. [9]

presented another quality measure for landmark selection

in known environments which is based on the comparison

of pose uncertainties. Dissanayake et al. [6] suggested a

map management which ensures a uniform distribution of



landmarks over the traversed area. Apart from landmark

selection, other active methods were presented such as max-

imizing the SLAM estimate by intelligent path planning [10]

or increasing the performance of a soccer playing robot by

active sensing [5].

In this paper, we present a new and universal approach

for landmark selection in unknown environments. The value

of a landmark is measured in terms of how well it improves

the navigation/localization capabilities of the robot given the

targeted navigation task. This is especially important for

robots with restricted resources. We learn a landmark selec-

tion policy using Monte-Carlo reinforcement learning [3, 17,

18] and k-nearest neighbor regression [16]. We show in real

world and simulation experiments that this technique allows

for more efficient robot navigation.

III. PRELIMINARIES

A. Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes’

filter that estimates the state x of an dynamical system in

discrete time steps given a sequence of actions u and observa-

tions z. The n-dimensional state vector x is represented by a

multivariate Normal distribution with mean µ and covariance

matrix Σ(n×n). The dynamics of the system are described by

a state transition function g plus Gaussian noise ǫg,t:

xt = g(ut, xt−1) + ǫg,t (1)

Measurements are integrated using the observation function:

ẑt = h(xt) + ǫh,t (2)

Again, Gaussian noise ǫh,t is added. Since Kalman filtering

is an approach for systems governed by a linear difference

equation, special efforts have to be taken to take the non-

linearities in g and h into account.

The key idea of the unscented Kalman filter, which has

been introduced by Julier and Uhlmann [7], is to apply

a deterministic sampling technique that is known as the

unscented transform to select a small set of so-called sigma

points around the mean. Then, the sigma points are propa-

gated through the non-linear functions. Afterwards, mean and

covariance estimates are computed based on the transformed

points. The advantage of this technique is that the filter can

much better deal with non-linearities and thus lead to a more

robust technique than the EKF.

B. Simultaneous Localization and Mapping

In the context of the SLAM problem, one seeks to simulta-

neously determine the map of the environment and the pose

of the robot. Probabilistic methods seek to estimate the joint

probability distribution

p(pt, l1, ..., lM |u1, ..., ut, z1, ..., zt) (3)

about the pose pt of the robot at time t and the position of

the landmarks l1, ..., lM given all previous motions u1, ..., ut

and observations z1, ..., zt. Various approaches to estimate

this posterior have been presented in the literature.

In this paper, we address the SLAM problem using the

UKF by representing the joint state (pT
t , lT1 , ..., lTM )T with

〈µ,Σ〉. This is a standard approach which has shown to

operate successfully in the past. For convenience, we abbre-

viate the mean of the robot pose (µ1, µ2, µ3)
T as (x, y, θ)T .

The mean of the jth landmark location (µ2j+2, µ2j+3)
T is

denoted by
(

l
[j]
x , l

[j]
y

)T

. Furthermore, we interpret the state

transition function h as the robots motion model. In addition,

we assume that range and bearing observations (ρ, φ)T are

given so that we can define a corresponding observation

model g. In our work, we initialize new landmarks in a single

step following the approach of Bailey [2].

Note that our approach is not limited to UKF or Kalman

filter-based approaches and any other method can be applied

for addressing the SLAM problem.

C. Monte-Carlo Reinforcement Learning

The basic idea of reinforcement learning [18] is to learn

by the interaction with the environment. We consider a

dynamical system consisting of an agent and its environment

at discrete time steps τ . At each point in time τ , the world

is in state sτ ∈ S and the agent chooses an action a ∈ A.

Then, the world transform into a new state sτ+1 and the agent

receives an reward rτ+1 ∈ R. The goal is to maximize the

return

Rτ =

T
∑

k=τ+1

rk, (4)

whereas T is the total number of time steps of one learning

episode. The agent is following a policy

π(s, a) := p(a|s) ∀s ∈ S (5)

which represents the probability of choosing action a under

the assumption of being in state s. Each policy π has a

corresponding Q-function

Qπ(s, a) := Eπ{Rτ |sτ = s, aτ = a} (6)

which specifies the expected return R from choosing action

a in state s. During the learning process, we would like

to approximate the optimal policy π∗(s, a) that maximizes

the expected return. Therefore, we have to approximate the

corresponding Q-function simultaneously.

One way of solving the reinforcement learning problem is

based on Monte Carlo methods [3, 17]. Here, we estimate

the Q-function as the average return over sample episodes.

Initially, the Q-function is initialized with an arbitrary prior.

During the training, a soft policy should be used. Thus, it

should hold that π(s, a) > 0 for all possible state-action

pairs in order to assure that each state is reachable during

the training process. One common soft policy is ǫ-greedy

which selects with the high probability of 1 − ǫ the action

a∗ = arg maxQ(s, a) (7)

that maximizes the expected return and a random action

otherwise.

Note that the time index t used in the SLAM setting is

not necessarily identical with the discrete time at which the



Fig. 1. Illustration of the single-goal navigation task.

reinforcement learning framework has to make decisions.

Therefore, we introduced a second time index τ to distin-

guish both in a sound way.

IV. NAVIGATION TASKS

A. Single-goal Task

Let us consider the following most basic navigation task

(see Fig. 1). The robot is located at position A. It is supposed

to drive from there to the goal position B. In this example,

the robot’s motion is affected by a drift. In addition, N

landmarks are distributed randomly over the environment.

When the robot perceives a new landmark, it has to decide

whether it should integrate this landmark in the UKF or not.

The UKF has a landmark capacity of M landmarks with

M << N . The goal is to choose the landmarks in a way such

that the distance of the final position of the robot (xT , yT )T
true

and the target position B is minimized. Hence, we define the

reward

rτ =

{

−
∣

∣B − (xT , yT )T
true

∣

∣ if τ = T

0 else,
(8)

as the negative Euclidean distance of the robot’s true position

to the goal B if the training episode reaches the terminal state

sT ; intermediate rewards r1,...,rτ−1 are set to zero.

B. Round-trip Task

In the round-trip task, the robot is supposed to reach

several subgoals. First, it starts at A and it is supposed to

drive to B, then back to A. Afterwards, it should target B

again and, finally, it should return to A. In this task, a new

subgoal is selected as soon as the position estimate of the

robot (xt, yt)
T is close to it – independent of the robot’s

true position (xt, yt)
T
true. In this task, the error in the pose

estimate should be minimized over the whole trajectory. For

convenience, we specify the return directly as the negative

average localization error over the remaining trajectory,

Rτ = −
1

|T − t(τ)|

T
∑

t′=t(τ)

∣

∣

∣

∣

(

xt′

yt′

)

true

−

(

xt′

yt′

)∣

∣

∣

∣

, (9)

whereas t(τ) specifies the time when the τ th decision is

made and T is the time when the robot reaches its final

destination. To simplify things for the second task, landmark

selection is only allowed while the robot moves from A to

B the first time. The round-trip task is more complex than

the previous one. However, it is worth considering since it

focuses on the loop-closing problem of SLAM and has a

higher a practical relevance than the single-goal task.

V. NAVIGATION AND LANDMARK SELECTION

A. Motion Control

The robot is steered towards the subgoals using a straight-

forward controller. An appropriate translational acceleration

ω̇t and rotational acceleration υ̇t is selected based on the

current estimate of the robot pose pt, the translational

velocity ωt and rotational velocity υt.

B. Learning Landmark Selection Policies

In order to learn landmark selection policies with Monte

Carlo reinforcement learning, we need to define the state

space S and the action space A. In addition to that, we need

to find an appropriate representation for the continuous Q-

function.

1) State Space: The available state information consists

of the UKF state 〈µ,Σ〉 and the current range and bearing

observation (ρ, φ)T . This full information would lead to an

high-dimensional state space so that a successful learning is

impractical. It is therefore desirable to reduce the space while

preserving as much as possible of the relevant information.

This can be achieved by defining features that summarize

the essential information. One of the features is the position

of the potentially new landmark,
(

l
[new]
x

l
[new]
y

)

=

(

xt + ρ cos(φ + θt)
yt + ρ sin(φ + θt)

)

, (10)

according to the current range and bearing observation

(ρ, φ)T and the robot’s pose estimate (xt, yt, θt)
T . Addition-

ally, we define the following five features:

1. Estimated distance to subgoal B,

dest =
∣

∣B − (xt, yt)
T
∣

∣ , (11)

2. Number of landmarks integrated in the UKF,

m = |{j ∈ M : Σ2j+2 < ∞∧ Σ2j+3 < ∞}| , (12)

where Σ2j+2 and Σ2j+3 are the variances of the jth

landmark in the x and y direction.

3. Yaw angle to potential new landmarks φ,

4. Distance of the potentially new landmark to the closest

landmark already integrated,

dl = min
j ∈ L

with Σ2j+2 < ∞

∧Σ2j+3 < ∞

∣

∣

∣

∣

∣

(

l
[j]
x

l
[j]
y

)

−

(

l
[new]
x

l
[new]
y

)∣

∣

∣

∣

∣

, (13)

5. Uncertainty of the robot pose Σ3×3 in terms of its

entropy,

H = ln(
√

(2πe)3|Σ3×3|). (14)

The first of these features summarizes the robot position

(xt, yt). The landmark positions l1, ..., lM are summarized

by the fourth feature while the new observation (ρ, φ)T is

represented by the third feature as well as fourth one. The

covariance Σt is comprised by the second feature and the

fifth one.



In the following, we will consider three different variants

of the learning approaches. The first approach only relies on

a two dimensional state space (first and second feature), the

second one uses an four dimensional feature space (first to

fourth feature) and the third one uses five dimensions (all

five features).

2) Function Approximation: Since the state space of the

features is continuous (with the exception of the second

dimension), we need to estimate the Q-function with some

function approximator. In our current implementation, we use

k-nearest neighbor (k-NN) regression [16]. Training points

– i.e. state/action values (s, a) which are each labeled with

a return R – are efficiently stored in set of kd-trees [4,

1]. The jth kd-tree represents the returns from choosing

an action aj in a given state s. If a query (s′, a′) is

performed, the k nearest data points to the query point s′

(w.r.t. Euclidean distance) are selected from the appropriate

kd-tree. The return is estimated as unweighted average over

the corresponding R-values. If less then kmin data points can

be found within a fixed radius around the query point, some

prior Rprior is returned. In our current implementation, we set

k = 50 to reflect the high amount of noise in our training

data; kmin is set to 10. The k-NN regression approach has

the advantage over the common grid-based discretization

methods that it has a high degree of generalization in areas

where the density is low and it is precise in regions where

the data points are dense. In contrast to non-linear models

such as neural networks [14], no over-fitting occurs. As

opposed to other regression techniques, in which the model

is also expressed directly in terms of their training data such

as Gaussian Processes [13], k-NN regression is very fast.

Even with hundred thousands of data points, a query can

be performed in a few milliseconds. An efficient evaluation

is essential for learning in practice, since the regression

has to be carried out frequently. In various tests, we could

not reveal a significant benefit from using Gaussian process

regression over k-NN regression for reinforcement learning

in our domain. Due to space restrictions, these experiments

are omitted in the experimental section.

3) Action Selection: In our learning problem, the action

is a binary decision:

A = {areject, aaccept} (15)

This means that either the potential new landmark is chosen

or not. In order to boost the training, a variant of ǫ-greedy

is used:

π(s) =































arg max Q(s, a) if Q(s, areject) 6= Q(s, aaccept)

and χ1 < 1 − ǫ

aaccept if [Q(s, areject) = Q(s, aaccept)

or χ1 ≤ ǫ] and χ2 < M
Nvisible

areject else
(16)

Here, χ1 and χ2 are uniform random samples between

zero and one; Nvisible is the expected number of visible

landmarks in one training episode. Thus, in the beginning

of the training – when Q(s, areject) = Q(s, aaccept) = Rprior

in most cases – it is ensured that landmarks are selected

over the whole trajectory. Neither landmarks in the beginning

of the episode nor landmarks in the end are preferred. If

standard ǫ-greedy is used, aaccept and areject would be chosen

with a probability of 0.5 each. Thus, depending on the

values for the landmark capacity M and expected number

of visible landmarks Nvisible it could happen that either all

landmarks are selected in the beginning of the episode or that

considerably fewer landmarks than M are selected. Either

would lead to a slow convergence rate.

To sum up, we use a learning approach for landmark

selection based on Monte-Carlo reinforcement learning and

k-NN regression. The state space is compactly represented

by five features and the action is a binary decision.

C. Generalization

Until now, we considered an approach to learn a selection

policy in unknown environments, but for a specific scenario.

However, it is desirable to train a policy in one scenario

and then apply this policy in another setting. Important

parameters of a training scenario are the number N of

landmarks in the environment and the landmark capacity M

of the UKF. To generalize, it is important to have a scenario-

independent state space representation. For instance, instead

of the number of landmark integrated in the UKF m, we

need to speak about the percentage of landmarks m
M

.

D. Deletion of Landmarks

In the Kalman filter framework, it is possible to delete

already integrated landmarks. This can be done without

affecting the statistical consistency by removing the appropri-

ate value from the mean vector and the corresponding rows

and columns from the covariance matrix [6]. If we want

to allow deletion, we must extend our action set A. Since

deletion is only useful if we replace the deleted landmark

with a new one, we propose the following action set

A = {areject, areplace1
, ..., areplaceM

}. (17)

The deletion of landmarks might be particular interesting in

connection with the round-trip task where those landmarks

should not be replaced which facilitate loop closure.

VI. EXPERIMENTS

A. Single-goal Task in Simulation

We evaluate the performance of our learning procedure

for the single-goal task in a simulated environment. We

choose an environment where N landmarks are randomly

distributed in a 30m × 60m area. The distance between the

start position A and the goal B is set to 44m. We train

our policy for 2,000 episodes. In each episode, landmarks

are randomly re-distributed. We compare the trained policies

with two heuristics. The first one is the M -first heuristic

which simply integrates the M first landmarks that are

observed. An apparently better policy is the equidistant

heuristic. With this heuristic, the robot only integrates a new

landmark after it has driven a certain distance so that the



Test scenario Policy trained in scenario equidistant

M / N 5 / 100 5 / 50 10 / 100 10 / 50 15 / 100 15 / 50 heuristic

5 / 100 11.5± 0.64 12.2± 0.68 14.9± 1.19 15.6± 1.36 16.6± 1.05 17.4± 0.99 13.2

5 / 50 10.7± 0.42 10.5± 0.49 11.6± 0.50 12.2± 0.52 12.7± 0.49 13.5± 0.62 13.6

10 / 100 6.9± 0.54 6.3± 0.47 6.8± 0.39 7.6± 0.61 8.4± 0.6 9.7± 0.97 8.5

10 / 50 8.2± 1.05 7.2± 0.48 7.1± 0.45 6.8± 0.26 7.1± 0.47 7.2± 0.35 9.6

15 / 100 5.9± 0.87 5.1± 0.36 4.9± 0.35 5.1± 0.24 5.1± 0.22 6.0± 0.46 6.6

15 / 50 8.0± 1.24 6.9± 0.71 6.5± 0.76 5.9± 0.41 6.0± 0.22 5.6± 0.28 7.5

TABLE I

HIGH DEGREE OF GENERALIZATION IN THE SINGLE-GOAL TASK. THE MEAN ERROR OVER TEN TRAINING RUNS AND THE CORRESPONDING

STANDARD DERIVATION IS SHOWN. ALL POLICIES MARKED BOLD ARE SIGNIFICANTLY BETTER THAN THE EQUIDISTANT HEURISTIC (α = 0.05).
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landmarks are approximately uniformly distributed over the

whole trajectory (similar to [6]).

For the learning, we use k-NN regression with a two-, a

four-, and a five-dimensional state space (see Section V-B).

For comparison, a learning approach using a grid-based dis-

cretization is performed. At first, we consider an UKF with

a landmark capacity of M = 10 and an environment with

N = 50 landmarks. Fig. 2 shows the evolution of the error of

different learning approaches using k-NN regression during

the training. The error is defined by the Euclidean distance

of the robot to the goal B. For each learning approach, ten

training runs are performed. Each trained policy and heuristic

is evaluated in 1,000 different environments (see Fig. 3).

The one-sample t-test with a significance level of α = 0.05
shows that all four learning approaches are significantly

better than the equidistant heuristic. Furthermore, it is shown

using a two-sample t-test that k-NN regression with a four

Fig. 4. Pioneer 2-DX8 robot with upward-looking camera and SICK laser
range scanner (left) and detected visual landmarks on the ceiling (right).

dimensional state space leads to a significant smaller error

than grid-based discretization with four dimensions as well

as k-NN with two dimensions. Thus, the third feature, which

is the distance dl of a new landmark to landmarks already

integrated, and the fourth one, which is the angle φ to the

new landmark, seem to include relevant information which

are not encoded in the first two dimension of the state space.

Further experiments revealed that indeed both features are

essential. However, we were not able to show that there is

any benefit from including the fifth feature, the entropy H of

the robot’s pose. Even with a significance level of α = 0.25,

the t-test did not reveal a difference between the learning

approach using the four dimensional state space and the

one using five dimensions. A qualitative comparison in an

example environment between the learned policy and the

heuristics is shown in the first half of the accompanying

video submission.

In order to evaluate how good the trained policies gener-

alize, we trained and tested a policy in environments with

N = 50 as well as N = 100 landmarks. In addition, we

use UKFs with a capacity M of five, ten, and 15 landmarks.

Tab. I illustrates the high degree of generalization of our

learning approach. For instance, if we perform a training in

a setting with N = 50 and M = 5, we see that the trained

policy leads to significantly better results than the equidistant

heuristic in all six test scenarios. This indicates that our

approach generalized over different landmark densities which

is similar to environments of different scale and sensor range.

B. Single-goal Task Performed in a Real World Experiment

Furthermore, we evaluated our learning approach in a

laboratory environment. Visual markers [8] have been ran-

domly attached to the ceiling in a 2.5m × 5m area. Our

used robot, a Pioneer 2DX-8, is equipped with a upward-

looking camera and a SICK laser range scanner (see Fig. 4).

The camera is used for the experiments observing landmarks



at the ceiling whereas the laser is used for (near) ground

truth evaluation. Since the odometry of the robot was too

accurate in the limited space in which we carried out the

experiment, we added a rotational bias of 0.1 rad per meter.

It is impractical to train the policy in the real-world because

this would not only require to perform hundreds of training

episodes but also to install different landmark distributions

for each training episode. Thus, we trained the policy in

simulation and tested it in the real-world setting. We also

compared the trained policy to the equidistant heuristic. Both,

the trained policy as well as the equidistant heuristic were

tested ten times. The trained policy results in an error of

0.50±0.08 whereas the equidistant heuristic leads to an error

of 0.66±0.07. Hence, the trained policy is significantly better

than the equidistant heuristic (w.r.t. a t-test with α = 0.05).

C. Round-trip Task

The performance of our learning procedure for the round-

trip task is evaluated in a simulated environment with N =
50 landmarks. It was trained using k-NN regression with a

four dimensional state space over ten training runs. Here,

the error is defined as the average localization error over

the whole trajectory. Again, we compare our learning with

the equidistant heuristic. Tab. II shows that the learned

policy is significantly better than the heuristic. Furthermore,

it is shown that we were able to generalize over the UKF

capacity M . In the second half of the accompanying video,

a qualitative evaluation is given.

D. Round-trip Task with Landmark Deletion

Finally, we analyzed a variant of the round-trip task

that, compared to the previous experiments, also allows the

deletion of landmarks. It should be noted that this scenario

is significantly more complex compared to the previous

tasks. For instance, the state space must be extended in

order to represent the already integrated landmarks. In initial

experiments, we figured out that good strategies keep a

set of landmarks fixed for re-localization and perform an

incremental pose correction with set of frequently replaced

landmarks. Further investigations are currently ongoing.

VII. CONCLUSION

In this paper, we presented an novel approach for landmark

selection in unknown environments using reinforcement

learning. The ability of a mobile robot to incorporate a land-

mark into its belief or to discard it allows for efficient robot

navigation under computational constraints. The presented

method is able to determine which landmark is valuable for

the robot to efficiently solve its current navigation task. This

is especially important for robots with restricted resources.

We demonstrated by a series of real world and simulation

experiments that the learned policies outperform handcrafted

heuristics. Furthermore, we showed that a learned policy has

a high degree of generalization since it can be applied in

different environments with changed underlying parameters.

Despite these encouraging results, there is space for further

optimizations. One interesting aspect is the possibility to

Test Policy trained in scenario equidistant

M 5 10 15 heuristic

5 3.28± 0.15 4.44± 0.41 5.06± 0.37 3.86

10 2.38± 0.09 2.37± 0.09 2.43± 0.06 2.85
15 2.30± 0.13 2.24± 0.17 2.23± 0.06 2.55

TABLE II

ROUND-TRIP TASK. ALL POLICIES MARKED BOLD ARE SIGNIFICANTLY

BETTER THAN THE EQUIDISTANT HEURISTIC (α = 0.05).

delete an already incorporated landmark. First experiments

indicate that improvements can be made although the prob-

lem is substantially more complex.
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