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Summary. In general, a mobile robot that operates in unknown environments naaitdain
a map and has to determine its own location given the map. This introducéfcsigt com-
putational and memory constraints for most autonomous systemsjap#or lightweight
robots such as humanoids or flying vehicles. In this paper, we praseitersal approach for
learning a landmark selection policy that allows a robot to discard landntlaak are not valu-
able for its current navigation task. This enables the robot to reducethputational burden
and to carry out its task more efficiently by maintaining only the importantrieréls. Our
approach applies an unscented Kalman filter for addressing the sinoltaloealization and
mapping problem and uses Monte-Carlo reinforcement learning to dhtagelection policy.
In addition to that, we present a technique to compress learned policiesitiitirmducing a
performance loss. In this way, our approach becomes applicablstanss with constrained
memory resources. Based on real world and simulation experimemtshow that the learned
policies allow for efficient robot navigation and outperform handcchftegategies. We fur-
thermore demonstrate that the learned policies are not only usable iificspeenario but
can also be generalized towards environments with varying properties.

1 Introduction

In recent years, there has been a trend towards embeddesnsyst robotics. A
series of such approaches deal with autonomous cars, pigispblimps, underwa-
ter vehicles, and wheeled or humanoid robots. As embeddstdrag typically have
much higher limitations with respect to the computatior@alpr and memory capac-
ity, it is important in the context of embedded systems teetgvefficient algorithms
that scale with the computational constraints of the uydeglhardware.

In robotics, one of the core capabilities needed for the ritgjof applications is
autonomous navigation. For truly autonomous navigatidnitrally unknown envi-
ronments, the robot has to solve the so-called simultariecabzation and mapping
(SLAM) problem [2, 14, 24, 21]. Solving the SLAM problem, hever, is computa-
tionally demanding and the memory requirements increaettve number of land-
marks that need to be maintained by the robot. In practiezetare many scenarios
in which the number of visible landmarks during a navigatiask is significantly



2 Hauke Strasdat  Cyrill Stachniss  Wolfram Burgard

larger than the number of landmarks which can be procesdigiepfly using an
embedded device. This leads to the question which landntemild@ be stored and
maintained by the robot to optimally solve the navigatiosktaA landmark is only
useful if it contributes to keep an accurate pose estimatgeafobot at the right time
and in such a way that it is valuable for the navigation taskhis paper, we present
an approach for learning a landmark selection policy thai@pes the navigation
task carried out by the robot given its computational or mgmamnstraints. It is
obvious that the utility of a landmark depends on the typeadigation task. We
analyze two types of navigation tasks: A single-goal navigetask and a round-trip
navigation task where subgoals are visited more then onee n@ajor advantage of
our approach is that the policies are not limited to the emrirtent they have been
learned in. Rather, they can also be applied successfudlgniitonments with differ-
ent properties of the underlying landmark distributionrtRermore, we presented a
way to compress learned policies so they become applicaldgstems with reduced
memory resources.

This paper is organized as follows. After a discussion aftesl work, Section 3
briefly introduces the unscented Kalman filter and its apgilbe to SLAM as well
as reinforcement learning. Section 4 then describes tlerelift navigation tasks
considered in this paper. After that, we introduce our apgao learn the optimal
landmark selection policy. Finally, we present experiraénésults carried out in
simulation as well as on a real wheeled robot.

2 Related Work

The standard method for SLAM relies on the extended Kalmgar {EKF) [12] or
its variants such as the unscented Kalman filter (UKF) [8]nbJshese approaches,
the computational requirement and memory demand incrddsast quadratically
with the number of landmarks since the full correlation testw the position of all
landmarks is taken into account. There are many approximéliering techniques
for SLAM [14, 24]. These methods do not incorporate the folirelation between
the landmarks, so that the computational constraints aerkestrictive. However,
their memory demand increases at least linearly with thebaurof landmarks used.
Recently, Salat al. [18] presented a graph-theoretic formulation for the selec
tion problem of visual features to perform navigation in Wmoenvironments. The
optimal set of features is defined as the minimal set with winiavigation is pos-
sible. Zhanget al. [26] proposed an entropy-based landmark selection methiod f
SLAM. This method specifies a measure of which visible landinabest in terms
of entropy reduction. However, it only provides a vague glifce for how many
features should be selected at a given point in time. Furtbes, Lerneret al. [11]
presented another quality measure for landmark seleatidkkméwn environments
which is based on the comparison of pose uncertaintiesabégakeet al. [6] sug-
gested a map management which ensures a uniform distribotiandmarks over
the traversed area. Apart from landmark selection, othéveamethods were pre-
sented such as maximizing the SLAM estimate by intelligaii planning [5], or in-
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creasing the performance of a soccer playing robot by aséwsing [10]. Recently,
Hornunget al. [7] proposed a system for learning acceleration policiethécon-
text of vision-based navigation. Furthermore, they presgba technique to compress
the learned policy using a clustering approach. Severaf @blicy/state space com-
pression techniques for reinforcement learning were ptesen the past [25][13].
While these techniques mainly focus on gaining a speed-upgll&arning, our pol-
icy compression approach is similar to Hornuetgal’s [7] and motivated by the
storage problem: How can we represent the learned policyringl compact way so
that it becomes applicable on memory-constrained systemhsathat, at the same
time, the compression does not lead to a loss of performance?

In this paper, we present a universal approach for landngelcson in unknown
environments. The value of a landmark is measured in termewfwell it improves
the navigation/localization capabilities of the robotegivthe targeted navigation
task. This is especially important for robots with resgttresources. We learn a
landmark selection policy using Monte-Carlo reinforceiriearning [3, 20, 23] and
k-nearest neighbor regression [19]. We show in real world sindilation experi-
ments that this technique allows for more efficient robotigetvon. Furthermore,
we demonstrate how the learned policies, which consistraf ¢ thousands of pa-
rameters, can be compressed using neural networks witHogs af performance.
In this way, our approach becomes applicable on memoryt@ined systems and
extends our previous work [22].

3 Preliminaries

3.1 Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes’ fitteat estimates the
statex of an dynamical system in discrete time steps given a seguehactions
u and observationg. The n-dimensional state vector is represented by a multi-
variate Normal distribution with meap and covariance matrixX("*™), The dy-
namics of the system are described bgtate transition functiory plus Gaussian
noiseey ;2 X; = g(Us, Xi—1) + €4.¢. Measurements are integrated using ehserva-
tion functionh: 2, = h(X;) + €+. Again, Gaussian noisg, ; is added. Since Kalman
filtering is an approach for systems governed by a lineaewifice equation, special
efforts must be made to take the non-linearitieg andh into account.

The key idea of the unscented Kalman filter, which has beeodated by Julier
and Uhlmann [8], is to apply a deterministic sampling tegaeithat is known as the
unscented transform to select a small set of so-called spgrimis around the mean.
Then, the sigma points are propagated through the nonrlineetions. Afterwards,
mean and covariance estimates are computed based on thitnaed points. The
advantage of this technique is that the filter can much be&akwith non-linearities
and thus lead to a more robust technigue than the EKF.
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3.2 Simultaneous L ocalization and Mapping

In the context of the SLAM problem, one seeks to simultankaletermine the map
of the environment and the pose of the robot. Probabilisgthaods seek to estimate
the joint probability distribution

p(ptallv"'vll\/l‘ulv"‘vutvzla"'azt) (1)
about the posgp, of the robot at time and the position of the landmarks . .., s
given all previous motions,, . .., u, and observations,, . . ., z,. Various approaches

to estimate this posterior have been presented in thetlirera

In this paper, we address the SLAM problem using the UKF byesgnting
the joint statgp?, 17, ... ,1T)T with (1, ¥). This is a standard approach which has
been shown to operate successfully in the past. For comesieve abbreviate the
mean of the robot pos@u1, 2, u3)? as(z,y,0)T. The mean of thgth landmark
location (g2, p2;+3)" is denoted by(lg[g],ly[j])T. Furthermore, we interpret the
state transition functioth as the robots motion model. In addition, we assume that
range and bearing observatiaigs ¢)” are given so that we can define a correspond-
ing observation model. In our work, we initialize new landmarks in a single step as
described in [2].

Note that our landmark selection framework is not limitedJigF or Kalman
filter-based approaches and any other method can be applieaddéiressing the
SLAM problem.

3.3 Monte-Carlo Reinforcement Learning

The basic idea of reinforcement learning [23] is to learnty interaction with the
environment. We consider a dynamic system consisting ofjantaand its environ-
ment at discrete time steps At each point in timer, the world is in states, € S
and the agent chooses an actiog .A. Then, the world transform into a new state
sr+1 and the agent receives a rewatd; € R. The goal is to maximize the return

T
R, = Z Tk, (2)

k=71+1

whereas? is the total number of time steps of one learning episode.aget is
following a policy
w(s,a):=pla|s) VseS 3

which represents the probability of choosing actiainder the assumption of being
in states. Each policyr has a corresponding Q-function

Q" (s,a) == E{R; | s; = s,a, = a} (4)

which specifies the expected retufhfrom choosing actior: in states. During
the learning process, we would like to approximate the agitjpolicy 7*(s, a) that
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Fig. 1. lllustration of the single-goal navigation task (a-c) and the round-trip (@sk

maximizes the expected return. Therefore, we have to appat& the corresponding
Q-function simultaneously.

One way of solving the reinforcement learning problem islasn Monte Carlo
methods [3, 20]. Here, we estimate the Q-function as theageereturn over sam-
ple episodes. Initially, the Q-function is initialized Wit prior Ryior. During the
training, asoft policyshould be used. Thus, it should hold thdt, a) > 0 for all
possible state-action pairs in order to assure that eatdisteeachable during the
training process. One common soft policyeigreedy which selects with the high
probability of1 — ¢ the action

a* = argmax Q(s, a) (5)

that maximizes the expected return and a random actionveiser

Note that the time indek used in the SLAM setting is not necessarily identical
with the discrete time at which the reinforcement learnirsgrfework has to make
decisions. Therefore, we introduced a second time index

4 Navigation Tasks

4.1 Single-goal Task

Let us consider the following most basic navigation task (Sig. 1 (a-c)). The robot
is located at positior. It is supposed to drive from there to the goal positi®nin
this example, the robot’s motion is affected by a drift. Iniidn, N landmarks are
distributed randomly over the environment. When the robotgiees a new land-
mark, it has to decide whether it should integrate this laaudnin the UKF or not.
The UKF has a landmark capacity &f landmarks with)\/ << N. The goal is to
choose the landmarks in such a way that the distance of tHeg6isgion of the robot
(z1,y7)twe @and the target positioB is minimized. Hence, we define the reward

r. = - |B - (xTayT)gjue| ifr=17
i 0 else,

(6)
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as the negative Euclidean distance of the robot'’s true ipasio the goalB if the
training episode reaches the terminal stateintermediate rewards ,...._; are
set to zero.

4.2 Round-trip Task

In the round-trip task, the robot is supposed to reach sksebgoals (see Fig. 1 (d)).
First, it starts atd and it is supposed to drive tB, then back toA twice. A new
subgoal is selected as soon as the position estimate offtoé(tq, v;)” is close to
it — independent of the robot’s true positién;, y;){,e In this task, the error in the
pose estimate should be minimized over the whole trajecEny convenience, we
specify the return directly as the negative average errer the remaining trajectory,

1 T T T
e e £ ) )
|T - t(T)l Z ’ Yt/ true Yy

t'=t(T)

; )

whereast(7) specifies the time when theth decision is made and@ is the time
when the robot reaches its final destination. To simplifpgisi for the second task,
landmark selection is only allowed while the robot movesftd to B the first time.
The round-trip task is more complex than the previous onevé¥er, it is worth
considering since it focuses on the loop-closing problei®lo&AM and therefore has
a higher practical relevance than the single-goal task.

5 Navigation and Landmark Selection
5.1 Motion Control

The robot is steered towards the subgoals using a strarglatfd controller. An ap-
propriate translational acceleratiopand rotational acceleration is selected based
on the current estimate of the robot pgge the translational velocity, and rota-
tional velocityv;.

5.2 Learning Landmark Selection Policies

In order to learn landmark selection policies with Montel@aeinforcement learn-
ing, we need to define the state sp&cand the action spacé. In addition to that, we
need to find an appropriate representation for the contimgbtunction. But first,
we would like to highlight what makes this problem difficult.

Challenges

Learning a landmark selection policy for navigation tasks ihard problem. Due
to the stochasticity of robot motion, optimal landmark séten can still lead to a
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Fig. 2. lllustration of the state space.

significant localization error of the vehicle. At the sanradj the robot may reach a
desired target location accurately by chance even if nonemils are selected at all.
Thus, the training data used in our learning domain is coatggmoisy. In the long
run, however, the average localization error reflects tajtradity of a specific selec-
tion strategy. Furthermore, it is crucial to remember thatperform navigation in
unknown environmentklence, it is not the goal to memorize a specific environment,
but to learn general principles. For this reason, eachilegepisode is performed in

a different environment. This makes the training data everemoisy: A selection
policy which is good for one environment might not be a goolicgan general (i.e.,
concerning the whole space of possible environments).

State Space

The available state information consists of the UKF stateX’) and the current
range and bearing observatign ¢)”'. This full information would lead to an high-
dimensional state space so that successful learning isotipal. It is therefore de-
sirable to reduce the space while preserving as much asbpmséithe relevant in-
formation. This can be achieved by defining features thatnsarize the essential
information. One basic feature is the position of the pasdigtnew landmark,

ety (m + peos(¢+6;) > ®)
l?[,nevq yr + psin(dp+6;) )’

according to the current range and bearing observétion)” and the robot’s pose
estimate(x;, y;, 0;)” . Additionally, we define the following five features:

1. Estimated distance to subgoal B (see Fig. 2 (a)),

: 9)
2. Number of landmarks integrated in the UKF (see Fig. 2 (b)),

)T

dest= !B — (T,

m:|{j€M:22j+2<oo/\22j+3<oo}\, (10)
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where X5, o and X,; 3 are the variances of thgh landmark in ther andy
direction.

3. Yaw angle to potential new landmarkgsee Fig. 2 (c)),

4. Distance of the potentially new landmark to the closestifaark already inte-
grated (see Fig. 2 (d)),

B\ (|
d; = min =175 , 11
i )~ e

with 22j+2 < oo A 22j+3 < 00
5. Uncertainty of the robot posg®*3 in terms of its entropy (see Fig. 2 (e)),
H = In(y/(2me)3| 273x3|). (12)

The first of these features summarizes the robot posftigry; ). The landmark po-
sitionsly, ..., |y, are summarized by the fourth feature while the new obsenvati
(p, )T is represented by the third feature as well as fourth one.cbliariancey;

is comprised by the second feature and the fifth one.

In the following, we will consider three different variant$ the learning ap-
proaches. The first approach only relies on a two dimensistagd space (first and
second feature), the second one uses an four dimensiohaidapace (first to fourth
feature) and the third one uses five dimensions (all five feaju

Function Approximation

Since the state space of the features is continuous (witextbeption of the second
dimension), we need to estimate the Q-function with sometfan approximator.

In our current implementation, we ugenearest neighbork¢NN) regression [19].
Training points — i.e. state/action valugs a) which are each labeled with a return
R — are efficiently stored in set of kd-trees [4, 1]. Tftha kd-tree represents the re-
turns from choosing an actiary in a given state. In the kd-tree representation, each
dimension of the data points are normalized between zer@aedso that spherical
search regions become practicable. If a quetya’) is performed, thé nearest data
points to the query poind’ (w.r.t. Euclidean distance) are selected from the appro-
priate kd-tree. The return is estimated as unweighted geereer the corresponding
R-values. If less thelk,,;,, data points are found within a fixed radius around the
query point, a prioiyrior IS returned instead. In our current implementation, we set
k = 50 to reflect the high amount of noise in our training data (see S&);k..in

is set to 10. Thek-NN regression approach has the advantage over the common
grid-based discretization methods that it has a high degfrgeneralization in areas
where the density is low and it is precise in regions whereltita points are dense.
In contrast to non-linear models such as neural networKs fib/over-fitting occurs.

As opposed to other regression techniques, in which the msddso expressed
directly in terms of their training data such as Gaussiarc€sses [15]k-NN re-
gression is very fast. Even with hundreds of thousands @& daints, a query can
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be performed in a few milliseconds. An efficient evaluatisressential for learning
in practice, since the regression has to be carried outérgtyu In various tests, we
could not reveal a significant benefit from using Gaussiangs® regression ovér
NN regression for reinforcement learning in our domain. Buspace restrictions,
these experiments are omitted in the experimental section.

Action Selection
In our learning problem, the action is a binary decision:
A= {arejecb aaccepg}‘ (13)

This means that either the potential new landmark is chosantoln order to boost
the training, a variant of-greedy is used:

arg maxQ(s, a) if Q(Sv afeject> # Q(Sa aaccepﬂ
andy; <1—e€

71'(5) = 4 Qaccept if [Q(& areject) = Q(Sﬂlaccepa ory; < 5] (14)
M
andX2 < Nuisible
Qreject else

Here, x1 andy- are uniform random samples between zero and dRgiye is the
expected number of visible landmarks in one training efsttbing this soft policy
in the beginning of the training — Whe(s, areject) = Q(S, accep) = Rprior IN MOSt
cases — landmarks are selected with the probability8f- . Thus, it is ensured that
landmarks are selected over the whole trajectory. Nerdrerharks in the beginning
of the episode nor landmarks in the end are preferred. Ifistalz-greedy is used,
aaccepraNdareject WouUld be chosen with a probability 6f5 each. Hence, depending
on the values for the landmark capacityand expected number of visible landmarks
Nuisivle it could happen that either all landmarks are selected itbéggnning of the
episode or that considerably fewer landmarks thhare selected. Either would lead
to a slow convergence rate.

To sum up, we use a learning approach for landmark selectisacbon Monte-
Carlo reinforcement learning anfdNN regression. The state space is compactly
represented by five features and the action is a binary decisi

5.3 Generalization

Until now, we considered an approach to learn a selectioicypol unknown envi-
ronments, but for a specific scenario. However, it is dekdrtbtrain a policy in one
scenario and then apply this policy in another setting. Irigot parameters of a train-
ing scenario are the numbéf of landmarks in the environment and the landmark
capacityM of the UKF. To generalize, it is important to have a scenaréependent
state space representation. For instance, instead of thieerof landmark integrated
in the UKFm, we need to speak about the percentage of landmigrks
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5.4 Policy Compression

Policies learned using-NN-regression usually consists of tens of thousands @f dat
points. To apply these policies on memory-constrainedesyst we need to pro-
duce a compressed representation. One possibility is tq@ss the Q-function
directly [25][13]. However, the Q-function also represeateas of the state/action
space which are rarely visited when applying a greedy poldgditionally, the Q-
function maps each state/action value to a return valueragisenve are only inter-
ested in the action to apply given a state and not the speetficrvalue. Therefore,
we follow the approach of Hornurgt al.[7] and perform the greedy policy times
(here,n = 1,000) and log the occurring decisions. As a result, we get a sed 60D
state/action pairs. Since we only have two different astiopject and aaccepi these
pairs can be seen as labeled training data of a binary ctzgifi task. In order to
compress the policy, any supervised classification tecteng@an be applied which
has a small number of model parameters. Here, we use a netvairk [17] with
one hidden layer, Rprop [16] for the weight optimizationdaigmoid activation
function. This leads to a continuous output between zerocera) whereas output
less thar0).5 are interpreted as zerodgijecy) and otherwise as one daccep)-

6 Experiments

T T
8 _ 2d state space +—+—
g P 4d state space =--s=--+
=1 5d state space
2 equidistant heuristic
E M-first heuristic
2]
©
Q | | | | | | |
5 6 7 8 9 10 11 12
error in meter

Fig. 3. Average performance of the trained policies and heuristics w.r.t0O1@ episodes.
For the trained policies, the mean over the ten training runs as well as tiesjponding5%-
confidence interval is shown.

6.1 Single-goal Task in Simulation

We evaluate the performance of our learning procedure fisthgle-goal task in

a simulated environment. We choose an environment whetandmarks are ran-
domly distributed in 80m by 60m area. The distance between the start positdon
and the goaB is set to44m. We train our policy for 1,000 episodes. In each episode,
landmarks are randomly re-distributed. We compare th@dthpolicies with two
heuristics. The first one is th&/-first heuristicwhich simply integrates thé/ first
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landmarks that are observed. An apparently better polityeisquidistant heuristic
With this heuristic, the robot only integrates a new landoedter it has driven a
certain distance so that the landmarks are approximatégromly distributed over
the whole trajectory (similar to [6]).

For the learning, we us&-NN regression with a two-, a four-, and a five-
dimensional state space (see Section 5.2). At first, we denan UKF with a land-
mark capacity ofd/ = 10 and an environment witth' = 50 landmarks. For each
learning approach, ten training runs are performed. Eaghed policy and heuris-
tic is evaluated in 1,000 different environments (see FjgTBe one-sample t-test
with a significance level ofv = 0.05 shows that all three learning approaches are
significantly better than the equidistant heuristic. Fenthore, it is shown using a
two-sample t-test that-NN regression with a four dimensional state space leads to
a significant smaller error thaNN with two dimensions. Thus, the third feature,
which is the distancéd,; of a new landmark to landmarks already integrated, and the
fourth one, which is the angl¢to the new landmark, seem to include relevant infor-
mation which are not encoded in the first two dimension of thesspace. Further
experiments revealed that indeed both features are ealséftivever, we were not
able to show that there is any benefit from including the fiéatfire, the entropif
of the robot’s pose. Even with a significance leveloot= 0.25, the t-test did not
reveal a difference between the learning approach usinfptiredimensional state
space and the one using five dimensions.

In order to evaluate how good the trained policies genealize trained and
tested a policy in environments witN' = 50 as well asN = 100 landmarks. In
addition, we use UKFs with a capacity of five, ten, and 15 landmarks. Fig. 4 (a)
illustrates the high degree of generalization of our leagr@Eipproach. For instance, if
we perform a training in a setting witN = 50 and M = 5, we see that the trained
policy leads to significantly better results than the equiadit heuristic in all six
test scenarios. This indicates that our approach genedatizer different landmark
densities which is similar to environments of differentlsand sensor range.

6.2 Single-goal Task Performed in a Real World Experiment

Furthermore, we evaluated our learning approach in a lagranvironment. Vi-
sual markers [9] have been randomly attached to the ceitimRi5m by 5m area.
Our used robot, a Pioneer 2DX-8, is equipped with an upwaoltihg camera and
a SICK laser range scanner (see Fig. 5). The camera is usebef@xperiments
observing landmarks at the ceiling whereas the laser is fasddear) ground truth
evaluation. Since the odometry of the robot was too accunatee limited space
in which we carried out the experiment, we added a rotatibred of(0.1 rad per
meter. It is impractical to train the policy in the real-wibihecause this would not
only require us to perform hundreds of training episodesalsd to install different
landmark distributions for each training episode. Thustnamed the policy in sim-
ulation and tested it in the real-world setting. We also careqd the trained policy to
the equidistant heuristic. Both, the trained policy as waslthe equidistant heuristic
were tested ten times. The trained policy results in an e@fror50 4+ 0.08 whereas
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Fig. 4. High degree of generalization in the single-goal task (a) and the rounthsip(b).
The mean error over ten training runs and the corresponding statiei@vetion is shown. All
policies below the dashed line are significantly better than the equidistanstiee(@r = 0.05).

the equidistant heuristic leads to an errofd@f6 + 0.07. Hence, the trained policy is
significantly better than the equidistant heuristic (wa.t-test witha, = 0.05).

J "

Fig. 5. Pioneer 2-DX8 robot with upward-looking camera and SICK lasereangnner (left)
and detected visual landmarks on the ceiling (right).

6.3 Round-trip Task

The performance of our learning procedure for the rourpltask is evaluated in a
simulated environment in a similar way to the single-gosaktdt was trained using
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k-NN regression with a four-dimensional state space ovetrgning runs. How-

ever, the error is defined as the average localization eurthe whole trajectory.
Again, we compare our learning with the equidistant heigrigtg. 4 (b) shows that
the learned policy is significantly better than the hewidturthermore, it is shown
that we were able to generalize over the UKF capatitys well as the number of
landmarks\ .

6.4 Policy Compression using Neural Network

m
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Fig. 6. Uncompressed strategy of the single-goal task. A projection of thediougnsional
state space on the first and second dimensions (left) as well as on tharttlifdurth dimen-
sion (right) is shown.

The uncompressed policy for the single goal task is illdsttén Fig. 6. The pol-
icy is represented using approximately 20.000 four-dirierad state points which
are either labeled withacceptOF areject (S€€ Sec. 5.4). The illustration indicates that
there is a large overlap between the two classes. This islikelst due to the nois-
iness of the training data, i.e., due to the fact that the wamye policy can lead
to different returns. However, it is important to noticettioaly projectionsof the
four-dimensional state space are shown and that the oventeyh that severe locally.
Since the state space of the round-trip task looks simtlar ot shown here.

We compressed our learned policy for the single-goal tasktha round-trip
task using neural network classification (faf=5 and/N=50). Since we have a four-
dimensional state space and we want to learn a binary decisie use a neural
network with four input units and one output unit. It turneat ¢hat a hidden layer
with three units is sufficient. This leads to a model with 18apaeters. To summa-
rize, we were able to compress the learned policies whicle warghly represented
by 80,000 parameters (20,000 four-dimensional pointsjguiaimodel with only 19
parameters.
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Fig. 7. Comparison of the compressed and uncompressed strategy of treegiagtask (top)
and the round-trip task (bottom). For the trained policies, the mean ovéerheaining runs
as well as the correspondifg%-confidence interval is shown.

For both navigation tasks, we learned policies in ten trgjruns. Each of the
learned policies was compressed using the method destxilve . aComparisons be-
tween the compressed and the uncompressed policies are ghéig. 7. One can
see that there is no performance loss using the compres$egpdn place of the
uncompressed ones. Surprisingly, the compressed polidhéosingle-goal task is
even significantly better than the uncompressed one. Thisl & explained by the
generalization property of neural networks. To analyzetindre precisely, it is worth
looking at the compressed policy. Since the neural netwarkpeters are hard to
interpret, we apply the same approach as before. We appbtotheressed policy in
1,000 different environments and log the occurring deosid he resulting labeled
data points are shown in Fig. 8. Although, the policy looksikir to the uncom-
pressed one (Fig. 6), there are differences. For instamcedtral network was able
to better model the decisions boundaries. Because of itetbmess, it performed
better on the unknown test data.

7 Conclusion and Future Work

In this paper, we presented an novel approach for landmaektsm in unknown
environments using reinforcement learning. The abilityaghobile robot to incor-
porate a landmark into its belief or to discard it allows fffirogent robot navigation
under computational constraints. The presented methdolésta determine which
landmark is valuable for the robot to efficiently solve itgremt navigation task.
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Fig. 8. Compressed strategy of the single-goal task. A projection of the fiougrtsional state
space on the first and second dimensions (left) as well as on the thiranrid dimension
(right) is shown.

This is especially important for robots with restrictedagses. We demonstrated
by a series of real world and simulation experiments thatéhened policies out-
perform handcrafted heuristics. Furthermore, we showatatearned policy has a
high degree of generalization since it can be applied ireddffit environments with
changed underlying parameters. Finally, we were able tqcess the learned poli-
cies by means of neural network classification without ititing a performance
loss.

Despite these encouraging results, there is space forefuirtiprovement. One
interesting aspect is the possibility to delete an alreadprporated landmark. It
should be noted that this scenario is significantly more dexmpompared to the
scenarios considered in the experimental section. Fanost the state space must
be extended in order to represent the already integratetimiarks. In initial ex-
periments, we figured out that good strategies keep a seindfriarks fixed for
re-localization and perform an incremental pose corractiith set of frequently
replaced landmarks.
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