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Summary. In general, a mobile robot that operates in unknown environments has tomaintain
a map and has to determine its own location given the map. This introduces significant com-
putational and memory constraints for most autonomous systems, especially for lightweight
robots such as humanoids or flying vehicles. In this paper, we presenta universal approach for
learning a landmark selection policy that allows a robot to discard landmarks that are not valu-
able for its current navigation task. This enables the robot to reduce the computational burden
and to carry out its task more efficiently by maintaining only the important landmarks. Our
approach applies an unscented Kalman filter for addressing the simultaneous localization and
mapping problem and uses Monte-Carlo reinforcement learning to obtainthe selection policy.
In addition to that, we present a technique to compress learned policies without introducing a
performance loss. In this way, our approach becomes applicable on systems with constrained
memory resources. Based on real world and simulation experiments, we show that the learned
policies allow for efficient robot navigation and outperform handcrafted strategies. We fur-
thermore demonstrate that the learned policies are not only usable in a specific scenario but
can also be generalized towards environments with varying properties.

1 Introduction

In recent years, there has been a trend towards embedded systems in robotics. A
series of such approaches deal with autonomous cars, helicopters, blimps, underwa-
ter vehicles, and wheeled or humanoid robots. As embedded systems typically have
much higher limitations with respect to the computational power and memory capac-
ity, it is important in the context of embedded systems to develop efficient algorithms
that scale with the computational constraints of the underlying hardware.

In robotics, one of the core capabilities needed for the majority of applications is
autonomous navigation. For truly autonomous navigation ininitially unknown envi-
ronments, the robot has to solve the so-called simultaneouslocalization and mapping
(SLAM) problem [2, 14, 24, 21]. Solving the SLAM problem, however, is computa-
tionally demanding and the memory requirements increase with the number of land-
marks that need to be maintained by the robot. In practice, there are many scenarios
in which the number of visible landmarks during a navigationtask is significantly
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larger than the number of landmarks which can be processed efficiently using an
embedded device. This leads to the question which landmark should be stored and
maintained by the robot to optimally solve the navigation task. A landmark is only
useful if it contributes to keep an accurate pose estimate ofthe robot at the right time
and in such a way that it is valuable for the navigation task. In this paper, we present
an approach for learning a landmark selection policy that optimizes the navigation
task carried out by the robot given its computational or memory constraints. It is
obvious that the utility of a landmark depends on the type of navigation task. We
analyze two types of navigation tasks: A single-goal navigation task and a round-trip
navigation task where subgoals are visited more then once. One major advantage of
our approach is that the policies are not limited to the environment they have been
learned in. Rather, they can also be applied successfully inenvironments with differ-
ent properties of the underlying landmark distribution. Furthermore, we presented a
way to compress learned policies so they become applicable on systems with reduced
memory resources.

This paper is organized as follows. After a discussion of related work, Section 3
briefly introduces the unscented Kalman filter and its application to SLAM as well
as reinforcement learning. Section 4 then describes the different navigation tasks
considered in this paper. After that, we introduce our approach to learn the optimal
landmark selection policy. Finally, we present experimental results carried out in
simulation as well as on a real wheeled robot.

2 Related Work

The standard method for SLAM relies on the extended Kalman filter (EKF) [12] or
its variants such as the unscented Kalman filter (UKF) [8]. Using these approaches,
the computational requirement and memory demand increase at least quadratically
with the number of landmarks since the full correlation between the position of all
landmarks is taken into account. There are many approximative filtering techniques
for SLAM [14, 24]. These methods do not incorporate the full correlation between
the landmarks, so that the computational constraints are less restrictive. However,
their memory demand increases at least linearly with the number of landmarks used.

Recently, Salaet al. [18] presented a graph-theoretic formulation for the selec-
tion problem of visual features to perform navigation in known environments. The
optimal set of features is defined as the minimal set with which navigation is pos-
sible. Zhanget al. [26] proposed an entropy-based landmark selection method for
SLAM. This method specifies a measure of which visible landmark is best in terms
of entropy reduction. However, it only provides a vague guideline for how many
features should be selected at a given point in time. Furthermore, Lerneret al. [11]
presented another quality measure for landmark selection in known environments
which is based on the comparison of pose uncertainties. Dissanayakeet al. [6] sug-
gested a map management which ensures a uniform distribution of landmarks over
the traversed area. Apart from landmark selection, other active methods were pre-
sented such as maximizing the SLAM estimate by intelligent path planning [5], or in-
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creasing the performance of a soccer playing robot by activesensing [10]. Recently,
Hornunget al. [7] proposed a system for learning acceleration policies inthe con-
text of vision-based navigation. Furthermore, they presented a technique to compress
the learned policy using a clustering approach. Several other policy/state space com-
pression techniques for reinforcement learning were presented in the past [25][13].
While these techniques mainly focus on gaining a speed-up during learning, our pol-
icy compression approach is similar to Hornunget al.’s [7] and motivated by the
storage problem: How can we represent the learned policy in amost compact way so
that it becomes applicable on memory-constrained systems and so that, at the same
time, the compression does not lead to a loss of performance?

In this paper, we present a universal approach for landmark selection in unknown
environments. The value of a landmark is measured in terms ofhow well it improves
the navigation/localization capabilities of the robot given the targeted navigation
task. This is especially important for robots with restricted resources. We learn a
landmark selection policy using Monte-Carlo reinforcement learning [3, 20, 23] and
k-nearest neighbor regression [19]. We show in real world andsimulation experi-
ments that this technique allows for more efficient robot navigation. Furthermore,
we demonstrate how the learned policies, which consist of tens of thousands of pa-
rameters, can be compressed using neural networks without aloss of performance.
In this way, our approach becomes applicable on memory-constrained systems and
extends our previous work [22].

3 Preliminaries

3.1 Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes’ filterthat estimates the
statex of an dynamical system in discrete time steps given a sequence of actions
u and observationsz. Then-dimensional state vectorx is represented by a multi-
variate Normal distribution with meanµ and covariance matrixΣ(n×n). The dy-
namics of the system are described by astate transition functiong plus Gaussian
noiseǫg,t: xt = g(ut, xt−1) + ǫg,t. Measurements are integrated using theobserva-
tion functionh: ẑt = h(xt) + ǫh,t. Again, Gaussian noiseǫh,t is added. Since Kalman
filtering is an approach for systems governed by a linear difference equation, special
efforts must be made to take the non-linearities ing andh into account.

The key idea of the unscented Kalman filter, which has been introduced by Julier
and Uhlmann [8], is to apply a deterministic sampling technique that is known as the
unscented transform to select a small set of so-called sigmapoints around the mean.
Then, the sigma points are propagated through the non-linear functions. Afterwards,
mean and covariance estimates are computed based on the transformed points. The
advantage of this technique is that the filter can much betterdeal with non-linearities
and thus lead to a more robust technique than the EKF.
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3.2 Simultaneous Localization and Mapping

In the context of the SLAM problem, one seeks to simultaneously determine the map
of the environment and the pose of the robot. Probabilistic methods seek to estimate
the joint probability distribution

p(pt, l1, . . . , lM | u1, . . . , ut, z1, . . . , zt) (1)

about the posept of the robot at timet and the position of the landmarksl1, . . . , lM
given all previous motionsu1, . . . , ut and observationsz1, . . . , zt. Various approaches
to estimate this posterior have been presented in the literature.

In this paper, we address the SLAM problem using the UKF by representing
the joint state(pT

t , lT1 , . . . , lTM )T with 〈µ,Σ〉. This is a standard approach which has
been shown to operate successfully in the past. For convenience, we abbreviate the
mean of the robot pose(µ1, µ2, µ3)

T as(x, y, θ)T . The mean of thejth landmark

location(µ2j+2, µ2j+3)
T is denoted by

(

l
[j]
x , l

[j]
y

)T

. Furthermore, we interpret the

state transition functionh as the robots motion model. In addition, we assume that
range and bearing observations(ρ, φ)T are given so that we can define a correspond-
ing observation modelg. In our work, we initialize new landmarks in a single step as
described in [2].

Note that our landmark selection framework is not limited toUKF or Kalman
filter-based approaches and any other method can be applied for addressing the
SLAM problem.

3.3 Monte-Carlo Reinforcement Learning

The basic idea of reinforcement learning [23] is to learn by the interaction with the
environment. We consider a dynamic system consisting of an agent and its environ-
ment at discrete time stepsτ . At each point in timeτ , the world is in statesτ ∈ S
and the agent chooses an actiona ∈ A. Then, the world transform into a new state
sτ+1 and the agent receives a rewardrτ+1 ∈ R. The goal is to maximize the return

Rτ =

T
∑

k=τ+1

rk, (2)

whereasT is the total number of time steps of one learning episode. Theagent is
following a policy

π(s, a) := p(a | s) ∀s ∈ S (3)

which represents the probability of choosing actiona under the assumption of being
in states. Each policyπ has a corresponding Q-function

Qπ(s, a) := Eπ{Rτ | sτ = s, aτ = a} (4)

which specifies the expected returnR from choosing actiona in states. During
the learning process, we would like to approximate the optimal policy π∗(s, a) that
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Fig. 1. Illustration of the single-goal navigation task (a-c) and the round-trip task(d).

maximizes the expected return. Therefore, we have to approximate the corresponding
Q-function simultaneously.

One way of solving the reinforcement learning problem is based on Monte Carlo
methods [3, 20]. Here, we estimate the Q-function as the average return over sam-
ple episodes. Initially, the Q-function is initialized with a priorRprior. During the
training, asoft policyshould be used. Thus, it should hold thatπ(s, a) > 0 for all
possible state-action pairs in order to assure that each state is reachable during the
training process. One common soft policy isǫ-greedy which selects with the high
probability of1 − ǫ the action

a∗ = arg maxQ(s, a) (5)

that maximizes the expected return and a random action otherwise.
Note that the time indext used in the SLAM setting is not necessarily identical

with the discrete time at which the reinforcement learning framework has to make
decisions. Therefore, we introduced a second time indexτ .

4 Navigation Tasks

4.1 Single-goal Task

Let us consider the following most basic navigation task (see Fig. 1 (a-c)). The robot
is located at positionA. It is supposed to drive from there to the goal positionB. In
this example, the robot’s motion is affected by a drift. In addition, N landmarks are
distributed randomly over the environment. When the robot perceives a new land-
mark, it has to decide whether it should integrate this landmark in the UKF or not.
The UKF has a landmark capacity ofM landmarks withM << N . The goal is to
choose the landmarks in such a way that the distance of the final position of the robot
(xT , yT )T

true and the target positionB is minimized. Hence, we define the reward

rτ =

{

−
∣

∣B − (xT , yT )T
true

∣

∣ if τ = T

0 else,
(6)
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as the negative Euclidean distance of the robot’s true position to the goalB if the
training episode reaches the terminal statesT ; intermediate rewardsr1,. . . ,rτ−1 are
set to zero.

4.2 Round-trip Task

In the round-trip task, the robot is supposed to reach several subgoals (see Fig. 1 (d)).
First, it starts atA and it is supposed to drive toB, then back toA twice. A new
subgoal is selected as soon as the position estimate of the robot (xt, yt)

T is close to
it – independent of the robot’s true position(xt, yt)

T
true. In this task, the error in the

pose estimate should be minimized over the whole trajectory. For convenience, we
specify the return directly as the negative average error over the remaining trajectory,

Rτ = −
1

|T − t(τ)|

T
∑

t′=t(τ)

∣

∣

∣

∣

(

xt′

yt′

)

true

−

(

xt′

yt′

)∣

∣

∣

∣

, (7)

whereast(τ) specifies the time when theτ th decision is made andT is the time
when the robot reaches its final destination. To simplify things for the second task,
landmark selection is only allowed while the robot moves from A to B the first time.
The round-trip task is more complex than the previous one. However, it is worth
considering since it focuses on the loop-closing problem ofSLAM and therefore has
a higher practical relevance than the single-goal task.

5 Navigation and Landmark Selection

5.1 Motion Control

The robot is steered towards the subgoals using a straightforward controller. An ap-
propriate translational accelerationω̇t and rotational acceleratioṅυt is selected based
on the current estimate of the robot posept, the translational velocityωt and rota-
tional velocityυt.

5.2 Learning Landmark Selection Policies

In order to learn landmark selection policies with Monte Carlo reinforcement learn-
ing, we need to define the state spaceS and the action spaceA. In addition to that, we
need to find an appropriate representation for the continuous Q-function. But first,
we would like to highlight what makes this problem difficult.

Challenges

Learning a landmark selection policy for navigation tasks is a hard problem. Due
to the stochasticity of robot motion, optimal landmark selection can still lead to a
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Fig. 2. Illustration of the state space.

significant localization error of the vehicle. At the same time, the robot may reach a
desired target location accurately by chance even if no landmarks are selected at all.
Thus, the training data used in our learning domain is comparably noisy. In the long
run, however, the average localization error reflects to thequality of a specific selec-
tion strategy. Furthermore, it is crucial to remember that we perform navigation in
unknown environments. Hence, it is not the goal to memorize a specific environment,
but to learn general principles. For this reason, each learning episode is performed in
a different environment. This makes the training data even more noisy: A selection
policy which is good for one environment might not be a good policy in general (i.e.,
concerning the whole space of possible environments).

State Space

The available state information consists of the UKF state〈µ,Σ〉 and the current
range and bearing observation(ρ, φ)T . This full information would lead to an high-
dimensional state space so that successful learning is impractical. It is therefore de-
sirable to reduce the space while preserving as much as possible of the relevant in-
formation. This can be achieved by defining features that summarize the essential
information. One basic feature is the position of the potentially new landmark,

(

l
[new]
x

l
[new]
y

)

=

(

xt + ρ cos(φ + θt)
yt + ρ sin(φ + θt)

)

, (8)

according to the current range and bearing observation(ρ, φ)T and the robot’s pose
estimate(xt, yt, θt)

T . Additionally, we define the following five features:

1. Estimated distance to subgoal B (see Fig. 2 (a)),

dest =
∣

∣B − (xt, yt)
T
∣

∣ , (9)

2. Number of landmarks integrated in the UKF (see Fig. 2 (b)),

m = |{j ∈ M : Σ2j+2 < ∞∧ Σ2j+3 < ∞}| , (10)
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whereΣ2j+2 andΣ2j+3 are the variances of thejth landmark in thex andy

direction.
3. Yaw angle to potential new landmarksφ (see Fig. 2 (c)),
4. Distance of the potentially new landmark to the closest landmark already inte-

grated (see Fig. 2 (d)),

dl = min
j ∈ L

with Σ2j+2 < ∞∧ Σ2j+3 < ∞

∣

∣

∣

∣

∣

(

l
[j]
x

l
[j]
y

)

−

(

l
[new]
x

l
[new]
y

)
∣

∣

∣

∣

∣

, (11)

5. Uncertainty of the robot poseΣ3×3 in terms of its entropy (see Fig. 2 (e)),

H = ln(
√

(2πe)3|Σ3×3|). (12)

The first of these features summarizes the robot position(xt, yt). The landmark po-
sitions l1, . . . , lM are summarized by the fourth feature while the new observation
(ρ, φ)T is represented by the third feature as well as fourth one. ThecovarianceΣt

is comprised by the second feature and the fifth one.
In the following, we will consider three different variantsof the learning ap-

proaches. The first approach only relies on a two dimensionalstate space (first and
second feature), the second one uses an four dimensional feature space (first to fourth
feature) and the third one uses five dimensions (all five features).

Function Approximation

Since the state space of the features is continuous (with theexception of the second
dimension), we need to estimate the Q-function with some function approximator.
In our current implementation, we usek-nearest neighbor (k-NN) regression [19].
Training points – i.e. state/action values(s, a) which are each labeled with a return
R – are efficiently stored in set of kd-trees [4, 1]. Thejth kd-tree represents the re-
turns from choosing an actionaj in a given states. In the kd-tree representation, each
dimension of the data points are normalized between zero andone, so that spherical
search regions become practicable. If a query(s′, a′) is performed, thek nearest data
points to the query points′ (w.r.t. Euclidean distance) are selected from the appro-
priate kd-tree. The return is estimated as unweighted average over the corresponding
R-values. If less thenkmin data points are found within a fixed radius around the
query point, a priorRprior is returned instead. In our current implementation, we set
k = 50 to reflect the high amount of noise in our training data (see Sec. 5.2);kmin

is set to 10. Thek-NN regression approach has the advantage over the common
grid-based discretization methods that it has a high degreeof generalization in areas
where the density is low and it is precise in regions where thedata points are dense.
In contrast to non-linear models such as neural networks [17], no over-fitting occurs.
As opposed to other regression techniques, in which the model is also expressed
directly in terms of their training data such as Gaussian Processes [15],k-NN re-
gression is very fast. Even with hundreds of thousands of data points, a query can
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be performed in a few milliseconds. An efficient evaluation is essential for learning
in practice, since the regression has to be carried out frequently. In various tests, we
could not reveal a significant benefit from using Gaussian process regression overk-
NN regression for reinforcement learning in our domain. Dueto space restrictions,
these experiments are omitted in the experimental section.

Action Selection

In our learning problem, the action is a binary decision:

A = {areject, aaccept} (13)

This means that either the potential new landmark is chosen or not. In order to boost
the training, a variant ofǫ-greedy is used:

π(s) =































arg max Q(s, a) if Q(s, areject) 6= Q(s, aaccept)

andχ1 < 1 − ǫ

aaccept if [Q(s, areject) = Q(s, aaccept) or χ1 ≤ ǫ]

andχ2 < M
Nvisible

areject else

(14)

Here,χ1 andχ2 are uniform random samples between zero and one;Nvisible is the
expected number of visible landmarks in one training episode. Using this soft policy
in the beginning of the training – whenQ(s, areject) = Q(s, aaccept) = Rprior in most
cases – landmarks are selected with the probability ofM

Nvisible
. Thus, it is ensured that

landmarks are selected over the whole trajectory. Neither landmarks in the beginning
of the episode nor landmarks in the end are preferred. If standardǫ-greedy is used,
aacceptandareject would be chosen with a probability of0.5 each. Hence, depending
on the values for the landmark capacityM and expected number of visible landmarks
Nvisible it could happen that either all landmarks are selected in thebeginning of the
episode or that considerably fewer landmarks thanM are selected. Either would lead
to a slow convergence rate.

To sum up, we use a learning approach for landmark selection based on Monte-
Carlo reinforcement learning andk-NN regression. The state space is compactly
represented by five features and the action is a binary decision.

5.3 Generalization

Until now, we considered an approach to learn a selection policy in unknown envi-
ronments, but for a specific scenario. However, it is desirable to train a policy in one
scenario and then apply this policy in another setting. Important parameters of a train-
ing scenario are the numberN of landmarks in the environment and the landmark
capacityM of the UKF. To generalize, it is important to have a scenario-independent
state space representation. For instance, instead of the number of landmark integrated
in the UKFm, we need to speak about the percentage of landmarksm

M
.
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5.4 Policy Compression

Policies learned usingk-NN-regression usually consists of tens of thousands of data
points. To apply these policies on memory-constrained systems, we need to pro-
duce a compressed representation. One possibility is to compress the Q-function
directly [25][13]. However, the Q-function also represents areas of the state/action
space which are rarely visited when applying a greedy policy. Additionally, the Q-
function maps each state/action value to a return value, whereas we are only inter-
ested in the action to apply given a state and not the specific return value. Therefore,
we follow the approach of Hornunget al. [7] and perform the greedy policyn times
(here,n = 1, 000) and log the occurring decisions. As a result, we get a set of 10,000
state/action pairs. Since we only have two different actions, areject andaaccept, these
pairs can be seen as labeled training data of a binary classification task. In order to
compress the policy, any supervised classification technique can be applied which
has a small number of model parameters. Here, we use a neural network [17] with
one hidden layer, Rprop [16] for the weight optimization, and sigmoid activation
function. This leads to a continuous output between zero andone, whereas output
less than0.5 are interpreted as zero (=areject) and otherwise as one (=aaccept).

6 Experiments
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Fig. 3. Average performance of the trained policies and heuristics w.r.t. 1,000 test episodes.
For the trained policies, the mean over the ten training runs as well as the corresponding95%-
confidence interval is shown.

6.1 Single-goal Task in Simulation

We evaluate the performance of our learning procedure for the single-goal task in
a simulated environment. We choose an environment whereN landmarks are ran-
domly distributed in a30m by 60m area. The distance between the start positionA

and the goalB is set to44m. We train our policy for 1,000 episodes. In each episode,
landmarks are randomly re-distributed. We compare the trained policies with two
heuristics. The first one is theM -first heuristicwhich simply integrates theM first



Learning Landmark Selection Policies for Mapping Unknown Environments 11

landmarks that are observed. An apparently better policy istheequidistant heuristic.
With this heuristic, the robot only integrates a new landmark after it has driven a
certain distance so that the landmarks are approximately uniformly distributed over
the whole trajectory (similar to [6]).

For the learning, we usek-NN regression with a two-, a four-, and a five-
dimensional state space (see Section 5.2). At first, we consider an UKF with a land-
mark capacity ofM = 10 and an environment withN = 50 landmarks. For each
learning approach, ten training runs are performed. Each trained policy and heuris-
tic is evaluated in 1,000 different environments (see Fig. 3). The one-sample t-test
with a significance level ofα = 0.05 shows that all three learning approaches are
significantly better than the equidistant heuristic. Furthermore, it is shown using a
two-sample t-test thatk-NN regression with a four dimensional state space leads to
a significant smaller error thank-NN with two dimensions. Thus, the third feature,
which is the distancedl of a new landmark to landmarks already integrated, and the
fourth one, which is the angleφ to the new landmark, seem to include relevant infor-
mation which are not encoded in the first two dimension of the state space. Further
experiments revealed that indeed both features are essential. However, we were not
able to show that there is any benefit from including the fifth feature, the entropyH
of the robot’s pose. Even with a significance level ofα = 0.25, the t-test did not
reveal a difference between the learning approach using thefour-dimensional state
space and the one using five dimensions.

In order to evaluate how good the trained policies generalize, we trained and
tested a policy in environments withN = 50 as well asN = 100 landmarks. In
addition, we use UKFs with a capacityM of five, ten, and 15 landmarks. Fig. 4 (a)
illustrates the high degree of generalization of our learning approach. For instance, if
we perform a training in a setting withN = 50 andM = 5, we see that the trained
policy leads to significantly better results than the equidistant heuristic in all six
test scenarios. This indicates that our approach generalized over different landmark
densities which is similar to environments of different scale and sensor range.

6.2 Single-goal Task Performed in a Real World Experiment

Furthermore, we evaluated our learning approach in a laboratory environment. Vi-
sual markers [9] have been randomly attached to the ceiling in a2.5m by 5m area.
Our used robot, a Pioneer 2DX-8, is equipped with an upward-looking camera and
a SICK laser range scanner (see Fig. 5). The camera is used forthe experiments
observing landmarks at the ceiling whereas the laser is usedfor (near) ground truth
evaluation. Since the odometry of the robot was too accuratein the limited space
in which we carried out the experiment, we added a rotationalbias of0.1 rad per
meter. It is impractical to train the policy in the real-world because this would not
only require us to perform hundreds of training episodes butalso to install different
landmark distributions for each training episode. Thus, wetrained the policy in sim-
ulation and tested it in the real-world setting. We also compared the trained policy to
the equidistant heuristic. Both, the trained policy as wellas the equidistant heuristic
were tested ten times. The trained policy results in an errorof 0.50 ± 0.08 whereas
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Fig. 4. High degree of generalization in the single-goal task (a) and the round triptask (b).
The mean error over ten training runs and the corresponding standardderivation is shown. All
policies below the dashed line are significantly better than the equidistant heuristic (α = 0.05).

the equidistant heuristic leads to an error of0.66± 0.07. Hence, the trained policy is
significantly better than the equidistant heuristic (w.r.t. a t-test withα = 0.05).

Fig. 5. Pioneer 2-DX8 robot with upward-looking camera and SICK laser range scanner (left)
and detected visual landmarks on the ceiling (right).

6.3 Round-trip Task

The performance of our learning procedure for the round-trip task is evaluated in a
simulated environment in a similar way to the single-goal task. It was trained using
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k-NN regression with a four-dimensional state space over tentraining runs. How-
ever, the error is defined as the average localization error over the whole trajectory.
Again, we compare our learning with the equidistant heuristic. Fig. 4 (b) shows that
the learned policy is significantly better than the heuristic. Furthermore, it is shown
that we were able to generalize over the UKF capacityM as well as the number of
landmarksN .

6.4 Policy Compression using Neural Network
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Fig. 6. Uncompressed strategy of the single-goal task. A projection of the four-dimensional
state space on the first and second dimensions (left) as well as on the thirdand fourth dimen-
sion (right) is shown.

The uncompressed policy for the single goal task is illustrated in Fig. 6. The pol-
icy is represented using approximately 20.000 four-dimensional state points which
are either labeled withaacceptor areject (see Sec. 5.4). The illustration indicates that
there is a large overlap between the two classes. This is mostlikely due to the nois-
iness of the training data, i.e., due to the fact that the verysame policy can lead
to different returns. However, it is important to notice that only projectionsof the
four-dimensional state space are shown and that the overlapis not that severe locally.
Since the state space of the round-trip task looks similar, it is not shown here.

We compressed our learned policy for the single-goal task and the round-trip
task using neural network classification (forM=5 andN=50). Since we have a four-
dimensional state space and we want to learn a binary decision, we use a neural
network with four input units and one output unit. It turned out that a hidden layer
with three units is sufficient. This leads to a model with 19 parameters. To summa-
rize, we were able to compress the learned policies which were roughly represented
by 80,000 parameters (20,000 four-dimensional points) using a model with only 19
parameters.



14 Hauke Strasdat Cyrill Stachniss Wolfram Burgard

 5  6  7  8  9  10  11  12po
lic

ie
s/

he
ur

is
tic

s
error in meter

uncompressed policy
compressed policy

equidistant heuristic

Single-goal task

 1  1.5  2  2.5  3  3.5po
lic

ie
s/

he
ur

is
tic

s

error in meter

uncompressed policy
compressed policy

equidistant heuristic

Round-trip task

Fig. 7. Comparison of the compressed and uncompressed strategy of the single-goal task (top)
and the round-trip task (bottom). For the trained policies, the mean over theten training runs
as well as the corresponding95%-confidence interval is shown.

For both navigation tasks, we learned policies in ten training runs. Each of the
learned policies was compressed using the method describe above. Comparisons be-
tween the compressed and the uncompressed policies are shown in Fig. 7. One can
see that there is no performance loss using the compressed policies in place of the
uncompressed ones. Surprisingly, the compressed policy for the single-goal task is
even significantly better than the uncompressed one. This could be explained by the
generalization property of neural networks. To analyze this more precisely, it is worth
looking at the compressed policy. Since the neural network parameters are hard to
interpret, we apply the same approach as before. We apply thecompressed policy in
1,000 different environments and log the occurring decisions. The resulting labeled
data points are shown in Fig. 8. Although, the policy looks similar to the uncom-
pressed one (Fig. 6), there are differences. For instance the neural network was able
to better model the decisions boundaries. Because of its smoothness, it performed
better on the unknown test data.

7 Conclusion and Future Work

In this paper, we presented an novel approach for landmark selection in unknown
environments using reinforcement learning. The ability ofa mobile robot to incor-
porate a landmark into its belief or to discard it allows for efficient robot navigation
under computational constraints. The presented method is able to determine which
landmark is valuable for the robot to efficiently solve its current navigation task.



Learning Landmark Selection Policies for Mapping Unknown Environments 15

accept:

reject:

0 10 20 30 40
0

2

4

6

8

distance to goal B (in meter)

nu
m

be
r 

of
 la

nd
m

ar
ks

 in
te

gr
at

ed

0 10 20 30 40
0

2

4

6

8

distance to goal B (in meter)

nu
m

be
r 

of
 la

nd
m

ar
ks

 in
te

gr
at

ed

1st and 2nd dim.

0 5 10 15 20

−50

0

50

distance to the closest landmark (in meter)

an
gl

e 
to

 la
nd

m
ar

k 
(in

 d
eg

re
e)

0 5 10 15 20

−50

0

50

distance to the closest landmark (in meter)

an
gl

e 
to

 la
nd

m
ar

k 
(in

 d
eg

re
e)

3rd and 4th dim.
Fig. 8. Compressed strategy of the single-goal task. A projection of the four-dimensional state
space on the first and second dimensions (left) as well as on the third andfourth dimension
(right) is shown.

This is especially important for robots with restricted resources. We demonstrated
by a series of real world and simulation experiments that thelearned policies out-
perform handcrafted heuristics. Furthermore, we showed that a learned policy has a
high degree of generalization since it can be applied in different environments with
changed underlying parameters. Finally, we were able to compress the learned poli-
cies by means of neural network classification without introducing a performance
loss.

Despite these encouraging results, there is space for further improvement. One
interesting aspect is the possibility to delete an already incorporated landmark. It
should be noted that this scenario is significantly more complex compared to the
scenarios considered in the experimental section. For instance, the state space must
be extended in order to represent the already integrated landmarks. In initial ex-
periments, we figured out that good strategies keep a set of landmarks fixed for
re-localization and perform an incremental pose correction with set of frequently
replaced landmarks.
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