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Abstract— Many applications in mobile robotics and espe-
cially industrial applications require that the robot has a precise
estimate about its pose. In this paper, we analyze the accuracy of
an integrated laser-based robot pose estimation and positioning
system for mobile platforms. For our analysis, we used a highly
accurate motion capture system to precisely determine the error
in the robot’s pose. We are able to show that by combining
standard components such as Monte-Carlo localization, KLD
sampling, and scan matching, an accuracy of a few millimeters
at taught-in reference locations can be achieved. We believe
that this is an important analysis for developers of robotic
applications in which pose accuracy matters.

I. INTRODUCTION

Localization is a well studied problem in mobile robotics
since the information about the robot’s pose is essential for
many applications. Over the last 20 years, several probabilis-
tic localization techniques have been proposed and they have
demonstrated the capability to robustly estimate the pose of
robots in a large variety of application scenarios.

Especially in industrial applications, a key requirement
is the high localization and positioning accuracy of the
robot on the factory floor. Precise positioning typically is
a prerequisite to perform docking or mobile manipulation
tasks such as pick and place. A typical example from factory
floors is that of a mobile manipulation robot that has to pick
up objects from predefined locations such as work benches.
As most industrial robots, due to safety restrictions, are
equipped with expensive laser rangefinders, they typically do
not rely on additional sensors. Before grasping the objects,
the robot is required to position itself precisely in front of the
corresponding work bench in such a setup. Popular solutions
to accurately position a robot with respect to predefined
reference locations or to follow predefined trajectories in
industrial systems rely on modifications of the environment
such as wires embedded in the floor or magnetic tapes
on the floor. Environment modifications, however, limit the
flexibility of a robotic system. Therefore, we analyze in this
paper the accuracy of mobile robot localization and motion
planning techniques purely based on laser range data so that
no modifications of the environment are required.
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Fig. 1. KUKA omniRob platform (left) and the environment used for
evaluation (right).

The key contribution of this paper is a thorough ex-
perimental evaluation of an integrated pose estimation and
precise path planning/path execution system for an industrial
mobile manipulation robot (see Fig. 1). The evaluation is
performed using a high precision motion capture system
that allows us to analyze the accuracy up to 0.1 mm at
specific locations. The localization system itself is based
on well-understood state-of-the-art approaches including
Monte-Carlo localization, KLD sampling, and scan align-
ment procedures. We analyze the accuracy of the combined
system and show that the platform can reliably navigate to
desired target locations with a precision of a few millimeters
neither requiring artificial markers nor wires embedded in the
floor or any other external sensors for pose estimation. Our
system relies only on laser rangefinders, a sensor modality
which is anyway required for safety reasons in most coun-
tries as soon as robots share their workspace with human
workers. We believe that our analysis of the localization
and positioning accuracy of mobile robots is valuable for
designing robotic applications in the industrial context, for
example for transportation tasks, pick and place actions,
docking maneuvers as well as other systems where pose
accuracy is crucial.

II. RELATED WORK

Mobile robot localization is a well studied field in robotics
and several approaches to localization have been proposed
in the past [1], [2], [7], [10], [15], [19]. Probabilistic ap-
proaches have been successfully applied to localize robots
with respect to a given map in a robust manner, often relying
on techniques such as extended Kalman filters (EKF) [19],
histogram filters [13] or particle filters, often referred to
as Monte-Carlo localization (MCL) [8]. There exist also



approaches combining ideas of MCL and histogram-based
methods [18].

Commonly used sensors for vehicle localization are cam-
eras [1], [2], [10], [15], [22], RFID or wireless receivers
estimating radio signal strength [11], [9], laser scanners [8],
[17] or GPS receivers. Vision-based MCL was first intro-
duced by Dellaert et al. [7]. Several image-based localization
techniques have been proposed that work on panoramic
images [1], [15], [20]. A localization accuracy between 0.4 m
and 0.8 m is reported in [15] and around 1 m in [1]. Other
localization techniques use perspective cameras and store
a database of visual landmarks, for example using SIFT
features. Se et al. [22] were the first to perform localization
using SIFT descriptor matching but did not track the position
of the robot over time. Elinas and Little [10] present a
MCL-based system using stereo cameras and SIFT features
whereas Bennewitz et al. [2] work with monocular cameras
and do not require explicit data associations among features.

Cho and Kim propose an EKF-based method for mobile
robot localization using chirp-spread-spectrum ranging [6].
The approach measures the distances between a mobile
robot and landmarks according to the time of flight of radio
frequency signals. Localization has also been performed
using wireless signals, for example, by Ferris et al. [11]
and Duvallet and Tews [9]. Both exploit Gaussian Process
regression for probabilistically modeling the signal strength.
Quigley et al. [21] analyze the localization accuracy in un-
modified environments using only inexpensive sensors such
as those employed in smartphones. They report a sub-meter
localization indoors, which is sufficient for most smartphone-
driven applications but often not enough for robots operating
in industrial settings.

Laser rangefinders are a popular sensor for robotic appli-
cations, since they provide precise distances to obstacles and
basically require no pre-processing of the sensor data itself.
Especially in the industrial context, most mobile robots are
equipped with laser scanners to perceive the environment, to
avoid obstacles and to carry out emergency stops. Therefore,
we only concentrate on laser-based localization in this work.
For standard MCL with SICK laser scanners, position errors
between 0.05 m and 0.2 m are reported in [8] and [25]. There
exist more recent reports on EKF/UKF-based pose estimation
errors for a Pioneer2 robot using SICK laser rangefinders
where the error is around 0.25 m and 3.5 deg [17]—these
errors appear to be rather large and their source is not
really clear from our perspective. Brščić and Hashimoto
report errors below “0.1 m at all times, while being less
than 0.05 m most of the times” in [3] for a similar hardware
setup. These results are roughly comparable to the accuracy
shown in [8], [25]. Already in 1998, Gutmann et al. [16]
evaluated the localization quality of laser-based systems
also considering scan matching to improve the localization
accuracy. They report highly accurate results. It should be
mentioned that given the evaluation possibilities at these
times, scan matching has also been used for determining the
ground truth estimates. The results presented in our paper
put the evaluation on a more precise ground.

Relatively little can be found about comprehensive eval-
uations of the accuracy of localization systems as it is
required for industrial mobile robots. Rather, most industrial
systems still require environment modifications such as wires
embedded in the floor or magnetic tape on the floor.

The contribution of this paper is the analysis of an inte-
grated laser-based localization and precise navigation system
for solving tasks in industrial settings without requiring mod-
ifications of the environment. By combining Monte-Carlo
localization with KLD sampling [12] and fine repositioning
using scan alignment as proposed by Censi [4], we build a
navigation system that can approach a target location with an
accuracy of a few millimeters. Whereas similar combinations
have been used in the past, for example in [16] or in the local-
ization system of the robot navigation toolkit CARMEN, our
approach additionally integrates the pose estimation system
with precise path execution. It is based on the path execution
system by Sprunk et al. [23] with the goal of arriving at
designated target locations with high precision. The main
contribution of this paper is thus the experimental evaluation.
We analyze the accuracy of the combined localization and
motion execution system. We show that a mobile platform
designed for industrial applications (we used the KUKA
omniRob platform) can approach a desired target location
with a precision of a few millimeters without requiring any
external landmarks or artificial markers, no wires embedded
in the floor or any other external means for pose estimation.
We believe that such results are essential and will finally pave
the way for autonomous mobile robots in industrial settings.

III. EVALUATED APPROACH

The deployment of a mobile robot in an industrial setting
poses strict requirements for a localization system in terms
of efficiency, accuracy and robustness. In this section, we
describe how we modified the standard MCL algorithm to
comply with these three requirements.

A. Monte-Carlo Localization with KLD Sampling

As a first step, we estimate the pose xt of the robot
at time t applying the Monte-Carlo localization (MCL)
proposed by [8], which recursively estimates the posterior
about the robot’s pose as follows:

p(xt | z1:t, u0:t−1) ∝

p(zt | xt)

∫
x′
p(xt | x′, ut−1)p(x

′ | z1:t−1, u0:t−2) dx
′ .

Here, u0:t−1 is the sequence of motion commands executed
by the robot and z0:t is the sequence of observations. The
motion model p(xt | xt−1, ut−1) denotes the probability that
the robot ends up in state xt given it executes the motion
command ut−1 in state xt−1 and the observation model
p(zt | xt) denotes the likelihood of making the observation zt
given the robot’s pose xt. To represent p(xt | xt−1, ut−1),
we employ the odometry motion model and for p(zt | xt), we
use the likelihood field (also called beam endpoint model),
both as defined in [24].



MCL uses a set of random samples also called particles
to represent the belief of the robot about its state and
updates the belief by sampling from the motion model when
receiving odometry information. The particles are weighted
according to the observation model whenever new observa-
tions are perceived.

To optimize the performance of the MCL, we apply
the KLD sampling [12] algorithm to adjust the number
of particles online. KLD sampling adapts the number of
particles by limiting the error introduced by the sample-based
representation. The error is computed using the Kullback-
Leibler divergence between the sampled distribution and a
discrete distribution computed over the whole map. Thus,
particles are basically generated on demand. For example,
during global localization or in areas where localization is
difficult new particles are created while the system keeps
the particle set small when tracking the robot’s pose. More
details on the technical realization can be found in [12].

B. Scan Matching to Improve the Precision

Due to the limited number of particles typically used and
the relatively coarse resolution of the underlying grid map,
the precision of the resulting pose estimate from MCL is not
always sufficient for an industrial setting. To improve the
accuracy of the pose estimates at the target destinations, we
store local sensor measurements as reference observations in
the map and use them for scan matching during runtime.
We apply a variant of a scan matching routine based on the
iterative closest/corresponding point (ICP) principle with a
point-to-line metric [4]. It computes the relative position of
the robot with respect to the position where the reference
scans were taken. This has the advantage that the reference
scans do not depend on the accuracy and resolution of the
grid map used in MCL. It is important to note that the scan
matching step is used as a post processing step using the
MCL output as initial guess. The scan match result is not
integrated back into the MCL estimate.

C. Increasing Robustness

It is well known that MCL is robust to small changes in
the environment. To even deal with significant dynamics in
the scene, for example caused by people walking by, one
can mask those beams of a scan that are not well explained
by the map when integrating over all particles [13]. Then,
the weighting step of the filter considers only the remaining
beams when computing the weight for each sample.

Scan matching procedures itself are typically very accurate
if the local minimum the approach found is also the global
one. Thus, the property of robustness does not necessarily
hold for the scan matcher and thus the final position that
is provided by our localization system. We increased the
robustness of the scan matcher in two ways. First, we
eliminate outliers in the laser readings using a trimmed
version in the ICP steps [5]. In trimmed ICP, the data
points with the least likely correspondences between the
scans are discarded when computing the transformation. This
enables the scan matcher to tolerate a number of spurious
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Fig. 2. Trajectories before and after optimization using the approach by
Sprunk et al. [23]. The generated trajectories account for constraints on
velocities and accelerations.

readings, for example, caused by dynamic obstacles or slight
modifications of the environment. Second, we exploit the
redundancy of two laser rangefinders to account for potential
failures. We perform two independent scan matching steps,
one for each laser. We then compare the two solutions and
discard them if they differ substantially from each other
or from the MCL estimate. In case of inconsistencies, the
system collects new scans and tries to match again, until a
maximum number of iterations is reached. We found that
this strategy is helpful in environments with high dynamics
such as multiple people in the direct vicinity of the robot.

D. Path Planning and Accurate Path Execution

For planning the motions of the robot, we use the mo-
tion generation approach recently presented by Sprunk et
al. [23] without modifications. This method generates smooth
base trajectories for holonomic omnidirectional robots (a
variant for differential-drive systems exists as well). The
method takes as input a set of waypoints and a map of the
environment to generate curvature continuous trajectories.
Furthermore, it explicitly accounts for constraints on the
velocity and acceleration of the vehicle which allows a
feedback controller to track the generated trajectories with
high precision.

The approach starts from an initial trajectory created either
from a sequence of given waypoints or from a traditional path
planner such as A*. It then employs an anytime optimization
of the shape of the trajectory with respect to a user-defined
cost function, e.g., the time of travel. A schematic example of
the optimization process is depicted in Fig. 2. Through reg-
ular replanning and smooth, continuous stitching of updated
trajectories the method can react to unmapped obstacles [23].

IV. EXPERIMENTAL EVALUATION

The evaluation of the integrated localization and motion
planning system was done in the hall shown in Fig. 3 (left)
which we equipped with a motion capture system of Motion
Analysis Digital using 9 Raptor-E cameras. The motion
capture system (mocap) allows us to accurately determine
the pose of the robot operating in the environment and thus
to evaluate the performance of the navigation system.

As a robot, we used the KUKA omniRob system, a
new omni-drive steered platform developed by KUKA and
targeted to the industrial as well as the research market. By
default, the robot is equipped with two SICK S300 laser
rangefinders.
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Fig. 3. Left: Evaluation site equipped with a motion capture system. Right: Grid map of the environment with 0.05 m resolution as used for Monte-Carlo
localization. Also shown are the three target locations of the platform in front of the work benches.

The map for the localization system was built using a
graph-based SLAM system [14]. For recording the map, the
robot was manually steered through the environment.

A. Task of the Robot

For our evaluation, we selected a typical navigation task
that needs to be performed in the industrial context. The task
of the robot was to approach three different work benches
and to position itself as accurately as possible in front of
the work benches so that objects can be picked up or be
delivered to the work place (without requiring further sensors
for visual servoing or similar). In our setup, the robot had
to repeatedly approach the three work benches depicted in
Fig. 3 (left). Every time the robot stopped, the localization
and the position accuracy of the platform were evaluated.
The three reference positions in front of the work benches
were taught in to the robot beforehand. This was done by
moving the robot to the three individual locations and then
recording the reference scans and MCL estimates.

B. Calibration and Accuracy of the Motion Capture System

The motion capture system provides 6D pose information
of markers in the environment. The markers were attached to
the robot to track its pose. As a first step, we calibrated the
mocap system using its own setup and calibration procedure.
Second, we attached markers to the floor to appropriately
obtain the ground plane and so that all further considerations
can be carried out in 2D. Third, we record the reference
locations by moving the robot physically to the desired goal
locations and recording the coordinates using the mocap.

Even for a precise mocap system, one has to distinguish
between the global and the local accuracy. We found that the
poses provided by the mocap are not necessarily globally
precise up to sub-millimeter accuracy. Locally, i.e., when
returning to the same place again, the mocap provides sub-
millimeter accuracy when the markers are standing still and
one can average over multiple readings reported by the
mocap (knowing that the markers do not move). To evaluate
the local accuracy of the calibrated mocap system, we left the
markers at the reference positions and covered the markers
after recording them so that the mocap lost track although

the markers have not been moved in reality. After a while,
we removed the covers and estimated the pose of the markers
again. By comparing the obtained poses, we always found a
position error of slightly below 0.1 mm.

To verify that the mocap does not have any drift in its pose
estimate, we also verified that the average positioning error
of the robot does not shown any time-dependent systematic
errors. We did not notice any systematic errors over time in
any of our experiments.

C. Evaluation Metric

As our evaluation metric, we use the pose error of the
robot relative to the taught-in locations. Here, we consider
the error in the x, y-plane as well as the angular error (yaw).
Throughout our experiments, we provide two different errors.
First, the positioning error of the robot to determine how
accurate the robot can position itself. This is the joint error of
the localization and positioning system as a whole. Knowing
about this error is, for example, essential for designing a
docking station or a docking behavior. Second, we evaluate
the error of the localization system alone, which tells us how
accurately the robot can estimate its own pose. Thus, this
error ignores possible limitations in the low-level controller
or hardware of the platform that affect the motion execution.

When computing the pose error of the robot, we always
determine the error relative to a reference location and not
based on a global map reference frame. This is done for three
reasons. First, the mocap system is typically not globally
precise up to millimeter accuracy. Second, computing the
error with respect to a global map up to a millimeter is
difficult since most maps build with today’s SLAM systems
do not provide such an accuracy. Third, computing the
error locally does not require to determine the coordinate
transformation between the map of the robot and the mocap
system. Depending on the map resolution, errors in the order
of a few millimeters are very likely.

Thus, we compute the error of the robot only as a
relative error, computed with respect to previously taught-
in reference locations. To teach in reference locations, we
positioned the robot before the evaluation run in front of
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Fig. 4. Positioning (blue) and localization (red) error plotted for the tree different positions as well as for all places together. The boxes indicate the
average error and the bars show the standard deviation (and not the standard error) to illustrate the distribution of the error in each setting. The cross
indicates the maximum error that occurred during the experiments. Whereas the left plot shows the error in the x, y-plane, the right plot contains the
angular error. The plots are created from an experiment in which the robot performed 390 positioning actions, executed in random order.

each work bench and recorded the current MCL estimate and
reference scans for the scan matcher. Then, the task of the
robot was to come back to exactly this location. As a result,
the error between the desired and approached location can
be measured with high precision.

In our evaluation, we only considered the pose error when
the robot was standing at the desired goal locations and
not during the motion of the robot. This has two reasons.
First, sub-millimeter accuracy can be obtained only when
the markers are standing still and the poses are averaged
over multiple readings. Second, when evaluating the robot’s
pose while driving, a highly accurate time synchronization
between the robot and the mocap is needed—otherwise, the
results are imprecise. Such accurate time synchronization
was not available between the realtime operating system
inside the KUKA omniRob and the mocap.

D. Accuracy in a Static Environment

This experiment is designed to analyze the localization and
positioning capabilities of the robot in a static environment.
We set up and calibrated the mocap system as described
above and then let the robot perform 390 tours to the different
work benches shown in Fig. 3, which took approximately
3.5h. Whenever the robot reached its desired target location,
we computed the translational and rotational error between
the robot’s pose and the taught-in reference location. In
addition to that, we analyzed the difference between the
estimated position of the robot’s localization system and the
one reported by the mocap. The reason why these two errors
are different is the fact that the robot’s firmware does not
execute small movements shorter than of 3 mm in distance.

Fig. 4 depicts the results of these experiments. Whereas
the left plot shows the translational error in the x, y-plane,
the right plot shows the angular error. The boxes indicate
the average error and the bars show the standard deviation to
illustrate the distribution of the error. The cross indicates the
maximum error that occurred throughout the experiments.
As can be seen from the figure, the average localization
error over all experiments is 3 mm/0.06 deg and the average
positioning error, i.e., the final position of the platform, was
5 mm/0.15 deg. Note that even the maximum errors are small.
The maximum localization error was 12 mm/0.3 deg and the
maximum position error 15 mm/0.5 deg.
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Fig. 5. Plots of the obtained positioning results at two different reference
locations. Whereas the large red cross in the middle represents the desired
target location, the blue crosses show the positions of the robot.

To better illustrate the errors of our system, Fig. 5 depicts
the positioning results obtained at two different reference
locations. The large red cross in the middle represents
the desired target location and the blue crosses show the
positions approached by the robot. The plots summarize the
results of approximately 250 positioning actions at the two
reference locations. As can be seen, there are no significant
outliers and the approached positions are roughly centered
around the reference locations. In sum, our system allows
a mobile robot to precisely localize itself and to approach
a desired goal appropriately. For comparison, the estimates
of the pure MCL localization were scatterred in a 0.06 m ×
0.06 m area at each target location at a grid resolution of
0.05 m.

E. Accuracy in a Dynamic Environment

This experiment is designed to analyze the localization and
positioning capabilities of the robot in a dynamic environ-
ment. Here, the focus was not on a complete rearrangement
of the scene but on people walking close to the robot or
objects that are additionally placed in the environment close
to the reference locations. We performed three different
experiments with different levels of dynamics. In the first ex-
periment, three people were walking in the direct proximity
of the robot and thus obstructing its laser range readings. In
the second experiment, the number of people was increased
to eight. Finally, in the third experiment, eight people as well
as additional objects were placed in the direct proximity of
the robot. We used three boards (0.8 m to 2 m) to shield and
occlude relevant parts of the scene.
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Fig. 6. Accuracy obtained in three experiments with dynamics in the
environment. Again, the boxes depict the average error, the bars the standard
deviation, and the crosses the maximum error that occurred in each setting.
This plot only includes the successful localization steps, i.e., those in which
the scan matcher did not report an error (see Sec. III-C).

The analysis of these experiments is depicted in Fig. 6. As
can be seen, the localization and the position error increases
compared to the static environment. The increase, however,
is not substantially and is roughly characterized by a factor
of two. The worst result we obtained was a position error of
17 mm and 0.53 deg.

F. Robustness

During all experiments in the static as well as in the
dynamic setup, the Monte-Carlo localization approach never
failed. It was always able to first globally find the robot’s
pose and then track it reliably. In the static setup, we also
did not observe any failures of the scan matching system.
The correct mode was always found and the maximum
localization error was 12 mm/0.3 deg as reported above.

In the dynamic setup, the task was more difficult for the
scan alignment procedure. As long as only people were
blocking the laser scanners, the system worked flawlessly
without a single failure. However, after heavily obstructing
the scanner with up to 2 m long boards set up in a way to
create ambiguous patterns given the environment structures
(extending walls or creating the impression that walls are
closer to the robot), the scan matching routine failed a few
times. Here, failure means that the scan matching processes
of the front or rear lasers provide results that are significantly
different from each other or the MCL belief. If this occurs
for two repeated trials, the robot reports an error, since it
cannot fine-position itself due to the high obstructions.

V. LESSONS LEARNED

Implementing and deploying a system that is able to work
reliably for long-term operation is not an easy task. In this
section, we discuss some of the lessons we learned during
the development and the tests of the system.

A. On the Importance of Parameters

Complex systems like the one presented in this paper often
have a lot of different parameters. It is well known that
finding the right values for them is a task that should not
be underestimated. We tried to keep the number of sensitive
parameters to a minimum, and always tried to formulate them

as entities that can be understood from the user perspective.
The most sensitive parameter for MCL is the number of
particles. The optimal value is in general hard to determine,
since it strongly depends on the size of the environment and
is always a trade off between efficiency and success rate.
With the use of KLD sampling, the system adapts the number
of particles according to how well the sample distribution
represents the real one. Although this looks like we increased
the parameters from one (the number of samples) to two
(the KLD error and the maximum number of particles), the
new parameters do not really depend on the environment
anymore but have a general meaning that depends on (a) the
desired accuracy and (b) the computational resources that are
available to the localization module.

Using the scan matching routine to obtain the final pose
estimates reduces the influence of other parameters of MCL
as well. In particular, we found that the variances of both,
the motion and the observation models, do not need a lot
of tuning. Unless they are not set to unrealistically small
values, the variances do not have a strong influence on the
final results or on the convergence rate, but only on the speed
of convergence. For the same reason, the resolution of the
map is also not as important anymore as long as it is higher
than the attraction area of the scan matching process (0.25 m
in our current implementation). In our experiments, we set
the grid map resolution to 0.05 m.

B. On the Integration of MCL and Scan Matching

Integrating a scan matching process on top of a localiza-
tion algorithm poses some implementation issues that need
to be addressed. A first question is the choice of the scan
matching algorithm, since one can easily get lost in the
large number of available methods. We found out, however,
that what is really important is to choose which family of
scan matching to use: grid-based or scan-based. Grid-based
or correlative algorithms use an occupancy grid and match
the current scan with a whole map by maximizing their
correlation, while scan-based algorithms store a reference
scan and try to find the transformation that maximizes the
overlap of the points of the current scan with the refer-
ence one. There are advantages and disadvantages for both
methods, and the choice depends on the application. Grid-
based methods are preferable when a precise position is
needed continuously and not only at reference positions. The
accuracy, however, will be lower compared to scan-based
approached and the scan alignment approach then depends
on the map discretization and to some degree on the accuracy
of the SLAM algorithm that was used to build the map.
Scan-based methods provide a higher accuracy but can work
reliably only if they have a reference scan taken from about
the same position. In our case, we used a scan-based method
for its higher precision and due to the requirement to localize
precisely only in a set of predefined positions.

A second question is when to run the scan matcher. Since
we decide to use a scan-based method, we do not want to run
it until the robot is close enough to the reference location.
We decided to run it only if the estimated position from MCL



is within the attraction area of the scan matcher, which we
experimentally found to be approximately 0.25 m.

C. On the Use of Two Laser Rangefinders

We used both laser rangefinders that are installed by
default on the KUKA omniRob platform to increase the
reliability and accuracy of the localization routine. We found
some aspects to be important in the multi-sensor setting.
Using two laser scanners as a unified sensor increases the
convergence rate and the accuracy of MCL. Especially, if
the environment looks ambiguous given only one sensor, the
second scanner is likely to resolve the ambiguity. However,
one needs to take into account that the sensors may partially
observe the same area and these parts of the scan may not
be considered as independent.

We furthermore found that both, the time stamping for
the two laser scanners and the odometry information has to
be precise. Otherwise, it is difficult to align the two scans
without systematic errors and this can affect the performance.

Regarding the scan matching routine, however, we found
that it is better to use the two lasers individually as this in-
creases the robustness in the presence of dynamic obstacles.
The problem is that there is not yet a robust solution to decide
if the scan matching process ended up in a local minimum.
Most scan matching implementations rely on thresholds
defined on the scan matching score or likelihood functions
and reject solutions below that threshold. Using the two
lasers individually allows us to check for consensus between
them and discard the scan matching estimates if there is no
consensus. In industrial settings, safety is a significant issue
and if the desired accuracy cannot be achieved it is important
to signal this information to the user or supervisor.

VI. CONCLUSIONS

In this paper, we presented an analysis that thoroughly
evaluates the accuracy of a mobile robot localization and
positioning system using an highly precise motion capture
system. The localization system is built upon standard com-
ponents that are well understood in robotics, namely Monte-
Carlo localization, KLD sampling, and scan matching. Our
analysis is targeted to developers of robotic applications in
which pose accuracy matters such as in industrial applica-
tions. We are able to show that it is possible to achieve a
localization and positioning accuracy of a few millimeters at
taught-in reference locations. Even in environments with sig-
nificant dynamics, the error of the described system is small
and typically around 7 mm/0.15 deg and never exceeded
17 mm/0.53 deg in any of our experiments. This accuracy
allows for creating robotic applications that require high
precision, for example, for docking maneuvers or mobile
manipulation tasks.
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