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Abstract—Service robots are envisioned to have an increasing
influence on our lives and to support us on a daily basis.
From a truly effective and personalized robot, we expect the
ability to learn our preferences concerning the requested tasks.
Such preferences, however, are often user-dependent so that
predefined strategies only match a subset of all users. In this
work, we address the problem of tailoring the robot’s behavior
to the preferences of its user. We present a novel solution to
the problem of encoding multiple preferences for individual
tasks that leverages the collaborative filtering framework. A key
aspect of our method is that it does not require each user to
specify preferences for all tasks. From a small number of known
preferences, our approach is able to infer the user’s taste for other
tasks. We present quantitative results based on crowdsourced
data from thousands of users. Our results suggest the validity of
our approach and demonstrate that we are able to predict user
preferences with respect to two service robot scenarios.

I. INTRODUCTION

One of the goals in robotics research is to develop au-

tonomous service robots that assist humans in domestic envi-

ronments. We envision robots to undertake a variety of tasks

like tidying up and attending to the needs of disabled people.

As robots get more and more capable of performing such

tasks, there is a growing need to take the personal preferences

of users into account [11, 12]. Learning user preferences,

however, is a non-trivial problem. In a home scenario for

example, each user probably has a preferred way of sorting

and storing various items. Many of our preferences stem from

factors like personal taste, cultural background, activities that

currently take place in the environment, or common sense.

Such factors are hard to formulate or model a priori. At the

same time, it is highly impractical to query the users about

their preferences for all tasks assigned to the robot.

In this work, we present a novel approach to the problem

of inferring user preferences that borrows ideas from data

mining and recommender systems. Our solution is based on

collaborative filtering, a successful theoretical framework for

learning user preferences in a wide variety of applications such

as suggesting movies on Netflix or products on Amazon. We

adapt the classical formulation for learning relations between

buyers and items to learning relations between users and

task preferences. By leveraging this theory, we formulate an

active learning system that allows for encoding multiple user

preferences for individual tasks. The representation is easy

to update and offers the possibility for lifelong learning and

improvement. Finally, our method does not require each user

to specify their own preferences for all the tasks.

Our approach proceeds in two phases. First, we collect many

user preferences using crowdsourced surveys in an offline

learning step. This is used to build a model for tastes related

to the considered tasks. In the second, active learning phase,

the robot queries the user about a few preferences and is able

to predict them for all the remaining tasks. We consider two

application scenarios that a service robot might be confronted

with: arranging grocery items on shelves and scheduling

tidying-up tasks according to their relative importance. We

collected preferences from over 2,000 surveys and present

results that show that our method is able to accurately predict

the taste of the users after only a few queries.

II. RELATED WORK

Recent advances in perception and manipulation have al-

lowed service robots to perform a variety of tasks related to

tidying up and cleaning [10, 14, 5]. However, for building

truly personal robots that operate in domestic environments,

we need a better understanding of how end-users prefer their

robots to attend to different everyday tasks. Several researchers

highlight the differences in people’s expectations and prefer-

ences regarding tasks performed by service robots [3, 11, 12].

The work of Koppula and Saxena [6] about anticipating human

activities can be regarded as a step in this direction.

In this work, we present an approach for predicting user

preferences for service robot applications based on collabo-

rative filtering, a successful approach used in recommender

systems [4]. Such systems are widely used for making per-

sonalized recommendations of products to users, e.g., Netflix

and Amazon. A popular approach to collaborative filtering is

based on factorization techniques [7, 13]. The main idea is to

discover latent patterns or tastes in a ratings matrix through

techniques such as singular value decomposition.

Recently, collaborative filtering techniques have been ap-

plied in the context of action recognition in videos and

selecting good floor coverage strategies to a vacuum-cleaning

robot [8, 9]. In contrast to such use cases, we aim at pre-

dicting subjective human user preferences. We therefore use

crowdsourcing to acquire a large number of individual user

preferences and construct a ratings matrix. To the best of our

knowledge, our work is the first to apply a combination of

crowdsourcing and collaborative filtering to learn and predict

task preferences for service robots.



Fig. 1. Example of a kitchen scene that has been presented to the contributors

for ranking the urgency of tidying-up tasks given the scene.

III. COLLABORATIVE FILTERING FOR LEARNING TASK

PREFERENCES FROM USERS

In this section, we formulate the problem of learning and

predicting user preferences using the framework of collabora-

tive filtering. This is grounded on the idea that user preferences

follow latent patterns such that people with a similar taste have

similar expectations about how the robot should solve a task.

We assume that such tasks have been previously learned by

the robot or pre-programmed by an expert.

A. Learning and Predicting User Preferences

Our collaborative filtering system makes use of an M �N

ratings matrix R that is composed of ratings for M dif-

ferent tasks I = fii; i2; : : : ; iMg given by N users U =
fu1; u2; : : : ; uNg. Each column ofR corresponds to the vector

of the ratings made by one user. Since most users only rate a

small subset of all tasks, R is typically incomplete.

We follow the formulation and factorization approach of

Bell and Koren [2, 7] and express each element of R as

riu = biu + riu: (1)

Here, riu refers to the rating for task i given by user u. The

term biu represents a (baseline) bias rating and riu a residual

rating, i.e., the deviation of the user rating from the bias, which

we aim to predict. All residual ratings riu are collected in the

residual ratings matrix R. Each biu is expressed as the sum

of a global, task-specific, and user-specific factor

biu = �+ �i +  u; (2)

where � is the global mean rating over all entries in R. The

term �i is specific for the task i and  u is the user-specific

term for user u. They respectively capture the average rating

a task tends to get or a user tends to give, i.e.,

�0i =

P
u(riu � �)

Ni

;  0u =

P
i(riu � �)

Mu

;

�i =

P
u(riu � ��  0u)

Ni

;  u =

P
i(riu � �� �i)

Mu

;

(3)

where Ni is the number of users who have rated tasks i, and

Mu is the number of tasks rated by user u.

We refer to tasks already rated by user v as the probe tasks,

Iv � I, and their corresponding ratings as the probe ratings

rv . The aim of a collaborative filtering system is to predict

the rating rjv for a task j by a user v who did not rate this

task before. To do so, we factor residual ratings riu in R as

the dot product of two K-dimensional factor vectors

riu = pTi � qu =

KX

k=1

(pkiqku); (4)

where pi and qu are respectively low-dimensional represen-

tations of task i and user u. We use PT and Q to denote the

M�K and K�N matrices whose columns are made up of all

pi and qu vectors, respectively. To compute pi and qu for all

i 2 I and u 2 U , we solve an optimization problem aiming at

minimizing the sum of the squared errors eiu = riu�p
T
i �qu

over all known residual ratings, i.e.,

argmin
P;Q

X

i2I;u2U

(riu � p
T
i � qu)

2 +
�

2
(kPk2 + kQk2);

(5)

where � is a regularizer. After computing P and Q, we can

predict the residual rating r̂jv, i.e., the predicted deviation of

the rating of user v about task j from the bias as

r̂jv = pTj � qv: (6)

Finally, we obtain the predicted rating r̂jv by adding the

corresponding biases, i.e., r̂jv = �+ �j +  v + r̂jv.

B. Active Collaborative Filtering for Robotics Tasks

After building a ratings matrix R from the ratings of

different users, the aim of the robot is to attend to tasks with

respect to a new user or environment. Initially, the robot has

no knowledge about the new user (the so-called “cold-start”

problem in the collaborative filtering literature). Therefore, in

the second online stage, it actively asks/probes the user about a

few random tasks. Using these probe ratings, the robot uses R

as described in Sec. III-A to predict all remaining task ratings

for the new user.

Our collaborative filtering formulation allows us to easily

incorporate new information about users. For adding a new

user, the ratings matrix R is augmented with an additional

column. For an existing user, only a single element in R

must be updated. This increases the knowledge of the robot

about the user’s tastes and allows for active online learning.

Without complicated modeling, new patterns of preferences

can be created or less granular tastes can be encoded. In the

long run, the more the users contribute to the database, the

finer the encoded spectrum of preferences will be.

IV. EXPERIMENTAL EVALUATION

We evaluated our approach on two service robot scenarios.

For both scenarios, we gathered user preferences through

surveys conducted using CrowdFlower [1]. In scenario 1,

we considered a butler robot that has to arrange grocery

items on different shelves. This is an example where spatial

arrangements of objects are motivated by complex factors like

user taste and object types so that manually designing a set of

hand-crafted rules is impractical and unlikely to match with

the tastes of all users. We defined a task as placing an item of



TABLE I

GROCERY SCENARIO DETAILED EVALUATION WITH P = 12 PROBES

no maybe yes

Baseline 1

Precision 59:5% 34:0% 69:2%

Recall 9:3% 95:0% 2:7%

F-score 0:16 0:50 0:05

Baseline 2

Precision 41:7% 32:5% 19:8%

Recall 22:5% 46:4% 22:2%

F-score 0:29 0:38 0:21

CF

Precision 67:1% 45:3% 58:1%

Recall 62:9% 55:2% 38:2%

F-score 0:65 0:50 0:46

TABLE II

KITCHEN SCENARIO, DETAILED EVALUATION WITH P = 6 PROBES

no maybe yes yes urgently

Baseline 1

Precision 0% 24:45% 34:05% 64:06%

Recall 0% 35:38% 71:10% 29:79%

F-score 0 0:29 0:46 0:41

Baseline 2

Precision 15:3% 24:9% 27:2% 32:7%

Recall 16:7% 33:6% 32:5% 15:6%

F-score 0:16 0:29 0:30 0:21

CF

Precision 28:5% 75:2% 83:2% 85:3%

Recall 85:5% 43:8% 40:3% 41:5%

F-score 0:43 0:55 0:54 0:56

one type next to another item on the same shelf. Overall, we

gathered ratings from 1,064 users on 100 different tasks by

posing questions like ‘Would you place item A next to item B

on the same shelf?’, where we randomly sampled the two

types from a set of 20 common grocery items (bread, cereals,

spices, etc). Each question could be answered with no, maybe,

or yes, corresponding to ratings of 0, 1, and 2. The resulting

ratings matrix has only around 18% of its entries filled with

ratings, and each task was rated by 190 users on average.

In scenario 2, we considered a robot tidying up a kitchen

environment with four main locations: table, countertop, floor,

and sink. We considered three object categories: kitchenware,

food, and miscellaneous items (e.g. books, toys, etc). We spec-

ified 15 tasks the robot can perform: remove dirty kitchenware

/ food / miscellaneous items from the table / floor / countertop,

wipe the table / countertop, vacuum-clean the floor, set the

table for dinner, clear away the clean dishes from the sink, and

take out the trash. We created 200 kitchen scene images with

random numbers of objects at the different locations (see Fig. 1

for an example). Each contributor was shown an image and

asked to rate the tasks in terms of urgency as follows: no (0),

if possible (1), yes (2), and yes urgently (3). We collected the

ratings in a matrix with 15 task rows and 1,100 user columns,

with around 60% of the entries filled with ratings.

A. Predicting User Preferences

We evaluated the ability of our approach to predict prefer-

ences in both scenarios by conducting a leave-one-out cross-

validation. We randomly queried a user about their ratings for

P tasks and predicted all the other tasks rated by that user.

We rounded the predicted ratings to the closest integer to get

a value from the rating scale of each scenario. We compared

our predictions to the known user ratings and evaluated the

performance by computing precision and recall values as well

as the F-score. We also compared our results to two baseline

approaches. Baseline 1 predicts a preference of a task using

the mean rating for that task over all users who have rated

it. Baseline 2 predicts a preference by randomly selecting a

value from the rating scale.

The results for scenario 1 are shown in Tab. I for P = 12.

Here, our collaborative filtering approach (CF) largely out-

performs the baselines with an F-score of 0.53 on average

versus 0.23 and 0.29 for the baseline approaches 1 and 2,

respectively. Note that baseline 1 is only able to obtain an

high recall in the maybe case and produces false negatives

in the other two ratings. This is due to the tendency of this

baseline to predict the preferences as maybe due to the highly

tri-modal preference distribution in most tasks. On the other

hand, despite partial, multimodal ratings, our method is able

to obtain high recall and precision on all cases. In particular,

we are able to correctly predict significantly more cases where

users explicitly rated tasks as no or yes.

The results for scenario 2 are shown in Tab. II for P = 6.

With six known ratings about the users, our approach is able

to outperform both baselines with an average F-score of 0.52

over all rating classes on the scale. Notice the low recall value

for baseline 1 in predicting tasks as no. This is due to the fact

that most tasks received high ratings in terms of urgency.

B. Influence of the Number of Probe Ratings

Furthermore, we evaluated the performance of our approach

with respect to the number of probe ratings for P = 2 : : : 10
and P = 4 : : : 20 for the first and second scenarios, re-

spectively. The results are shown in Fig. 2 and Fig. 3. As

expected, and as opposed to the baselines, the performance of

our approach improves given more probe ratings, which is in

line with the ability of collaborative filtering to use knowledge

about users to predict their preferences. This highlights the fact

that it is suboptimal to rely on heuristics like the baselines for

predicting preferences that match all users.

V. CONCLUSION

We presented an approach that utilizes collaborative filtering

for encoding robotic task preferences. Our technique leverages

active learning, is easy to update, and is able to encode

multiple tastes for each task. To the best of our knowledge,

this is the first time that all these objectives are simultaneously

achieved in a robotics context. We performed extensive experi-

ments in the context of two typical service robotic applications.

For training, we collected thousands of user preferences using

a crowdsourcing platform. Experimental results demonstrate

that our method is able to reliably estimate task preferences

after querying the user only a few times.
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Fig. 2. F-score evaluation with respect to number of probes in the scenario of

organizing grocery items. The scores are averaged over all rating categories:

no, maybe, and yes. The performance of our method (CF) improves with more

knowledge about how users have previously rated tasks. This is in contrast to

the baselines that use the average ratings over users.
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Fig. 3. F-score evaluation with respect to number of probes in the kitchen

scenario. The scores are averaged over all rating categories: no, maybe, yes,

and yes urgently. As in the groceries scenario, the performance of our method

(CF) improves with more knowledge about the users. This is in contrast to

the behaviour of both baselines.
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