
Variable reordering strategies for SLAM

Pratik Agarwal and Edwin Olson

Abstract— State of the art methods for state estimation and
perception make use of least-squares optimization methods
to perform efficient inference on noisy sensor data. Much of
this efficiency is achieved by using sparse matrix factorization
methods. The sparsity structure of the underlying matrix
factorization which makes these optimization methods tractable
is highly dependent on the choice of variable reordering; but
there has been no systematic evaluation of reordering methods
in the SLAM community.

In this paper we evaluate the performance of various
reordering techniques on benchmark SLAM data sets and
provide definitive recommendations based on our results. We
also compare these state of the art algorithms against our simple
and easy to implement algorithm which achieves comparable
performance. Finally, we provide empirical evidence that few
gains remain with respect to variants of minimum degree
ordering.

I. INTRODUCTION

Graph-based SLAM methods are becoming increasingly

popular for mapping problem in robotics. In these ap-

proaches, each robot pose is represented as a node in the

graph and each constraint as an edge. This approach was first

proposed by Lu and Milios using the classic least squares

formulation [1]. Their approach required the inversion of

the full (dense) covariance matrix which is too expensive

to compute for even modestly sized problems.√
SAM showed that instead of the expensive matrix in-

version, sparse matrix factorization with an efficient variable

reordering could be used to solve the least squares SLAM

formulation in a tractable way even for large problems [2]. It

proposed using a sparse Cholesky or QR decomposition with

column approximate minimum degree (COLAMD) variable

reordering [3].

Variable reordering is equivalent to row and column

exchanges on a matrix. A good variable reordering helps

increase the sparsity structure of the factorized matrix.

Different reordering techniques produce different sparsity

structure, but all of them try to minimize fill-in.

Reordering has a direct impact on the fill-in caused by

matrix factorization, which affects the solve time for SLAM

problems. The fact that affects of variable reordering algo-

rithms have not been investigated despite their critical role

in graph SLAM algorithms motivates this work.

The central contributions of this paper are:

1) We evaluate existing state of the art variable reordering

strategies on standard SLAM benchmarks.

2) We propose an easy to implement reordering strategy

that yields competitive performance.

The authors are affiliated with the department of Computer Science and
Engineering, University of Michigan, 2260 Hayward Street, Ann Arbor,
Michigan. {pratikag,ebolson}@umich.edu

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.5

1

1.5

2

2.5

Number of nodes
ti
m

e
 i
n

 s
e

c
o

n
d

s

 

 

EMD

BHAMD

AMD

COLAMD J

COLAMD J
T
J

METIS

NESDIS

(a) Reorder time

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

2

4

6

8

10

12

Number of nodes

ti
m

e
 i
n

 s
e

c
o

n
d

s

 

 

EMD

BHAMD

AMD

COLAMD J

COLAMD J
T
J

METIS

NESDIS

(b) Solve time

Fig. 1: Reorder and solve time for different variable reorder-

ing methods. Results shown for simulated grid world data

sets containing 2000 to 20000 nodes with an average node

degree of 3. AMD and COLAMD J compute reordering

quicker than other algorithms. METIS and NESDIS have the

least solve time. Solve time for COLAMD JTJ is worse than

all the algorithms.

3) We provide evidence showing that few gains remain

with respect to variants of minimum degree ordering.

4) We provide definitive recommendation for choosing a

particular reordering given a SLAM graph.



II. BACKGROUND

This paper investigates the sparsity of the matrices that

result from formulating SLAM as a least-squares problem.

We begin by showing the origin of these matrices.

A. Non linear SLAM using matrix factorization

Each edge (constraint) in a SLAM graph is a set of

simultaneous equations f that relates a set of state variables

x to some observed quantity z. The difference between the

observed and the predicted value of an observation is the

residual ri. These constraints are generally associated with

an uncertainty covariance Σ. Scaling the residual by the

constraint’s confidence Σ−1

i
results in the χ2

i
error.

χ2

i
= (zi − fi(x))Σ

−1

i
(zi − fi(x)) (1)

The observation equations are non-linear due to the effect

of rotation. We can linearize fi around the current estimate

x0, as fi(x) ≈ fi(x0)+Ji(x−x0) where Ji is the Jacobian.

Substituting ri = zi − fi(x0) and d = (x− x0), we obtain:

χ2 ≈
∑

i

(Jid− ri)
TΣ−1

i
(Jid− ri) (2)

If we stack the Ji and ri matrix, and create a block-

diagonal matrix from the Σ−1

i
matrices, we can write:

χ2 ≈ (Jd− r)TΣ−1(Jd− r) (3)

The maximum likelihood solution can be obtained my

minimizing χ2, with Σ−1 = LLT , this over-constrained

system of equations can be written as:

LTJd = LT r (4)

The solution to such a system can be found through a

QR decomposition. Alternatively we can form the normal

equations by multiplying both sides with JTL:

JTΣ−1Jd = JTΣ−1r

Ax = b (5)

The matrix JTΣ−1J is the information matrix, which

we will generally refer to as A in this paper. A is square

and symmetric, with dimensions equal to the number of

unknowns and the solution to the system can be found

through a Cholesky decomposition. In contrast, J is tall and

skinny: the number of rows in J is equal to the number of

equations or edges in the graph and number of columns is

equal to number of variables or nodes.

In both the case of QR and Cholesky factorization, per-

formance is largely dictated by the sparsity of both the input

(J or A) and the sparsity of the resulting factorization. The

sparsity of the factorization depends on the ordering of the

variables. We illustrate the dependence of variable ordering

in the next section.

(a) Simple 5 robot SLAM graph

(b) Matrix structure using default ordering

(c) Matrix structure using a different ordering. The blue boxes show the
sparse structure obtained due to reordering.

Fig. 2: A simple example showing the effects of reordering.

Fig. 2(b) shows the matrix structure using original order-

ing. Fig. 2(c) shows the matrix structure after reordering.

Reordering helped in the second case reduced fill in.

B. Variable Reordering

Variable reordering has been an active area of research

in the field of Graph theory and sparse linear algebra. An

efficient variable reordering can help the QR or Cholesky

decomposition by minimizing the fill-in (see Fig. 3).

Consider a simple example as shown in Fig. 2(a). It con-

sists of a SLAM graph with 5 poses and 6 edges. The green

edges are odometry edges while red edges are loop closure

edges. Fig. 2(b) shows the sparsity structure of the Jacobian

matrix J and the matrix representing normal equations A.

Each matrix column is labeled with the corresponding pose

number. L is the result of factorizing A using a Cholesky

decomposition. (This L is distinct form the one in Eqn. 4)

Notice however the L factor is fully dense.

Now lets consider a different ordering of variables shown

in Fig. 2(c). The reordered Jacobian and normal equations

represent exactly the same problem: we have simply changed

the order of the variables and equations. Critically, the

sparsity structure of Lr is better than that of L: reordering

J helped reduced fill-in. The goal of reordering algorithms

is to minimize fill-in for L, speeding up the factorization

process.

We can use permutation matrix P to transform between

A and Ar. Permutation matrix are square binary matrices

with exactly one entry 1 in each column and 0s elsewhere.

Multiplying a matrix by a permutation matrix reorders the

columns and rows. Since permutation matrices are orthog-

onal, their inverse is equal to their transpose. This trivially



(a) csw dataset fill-in

(b) Intel dataset fill-in

Fig. 3: Reordering helps to reduce fill-in. Top rows in

each sub-figure shows the unordered matrix representing

the normal equations (for csw and Intel dataset) and the

corresponding lower triangular Cholesky factorized matrix.

The bottom rows show the reordered matrix and the cor-

responding Cholesky factorized matrix. The fill-in for the

reordered matrix is much smaller due to a good reordering.

allows to recover the solution to the original problem. If Xr

is the solution to P (A)xr = Pb, x = PTxr

Reordering methods try to find a permutation matrix P

which maximizes the sparsity in L. Different reordering

techniques do not change the solution but generate differ-

ent sparsity patterns. Unfortunately, computing a reordering

which minimizes fill-in is NP-complete1[4]. Exact Minimum

Degree (EMD) is widely used as a heuristic to minimize

fill-in [5]. Various variants of EMD have been developed

which are much faster than EMD itself, but achieve this due

to approximations. In the next section we describe some of

1It is somewhat entertaining that matrix inversion is roughly O(n3), and
the purpose of variable ordering is to reduce the run-time. However, we
discover an NP-hard problem, which is harder than the original problem we
set out to solve! Fortunately, an optimal variable ordering is not required;
great gains can be obtained even with an imperfect ordering.

these variants including EMD itself.

III. VARIABLE ORDERING METHODS

A. Exact Minimum degree ordering

EMD is based on the observation that, when a variable is

eliminated, a clique is formed between its neighbors. Each

of the edges in this clique contributes to fill-in. Thus, the

exact minimum degree ordering aims to minimize fill in by

forming the smallest possible clique at each step.

Algorithm 1 Exact Minimum Degree

1: while variable nodes remain do

2: Choose a node y with minimum node degree

3: remove node y from the graph

4: add edges between all of y’s neighbors

5: end while

EMD greedily picks the best degree node at each step;

it does not “plan ahead” and thus does not generally pro-

duce the optimal fill-in for reducing ordering. Empirically

however, it performs well. The order in which the nodes are

eliminated is used for reordering the matrix. The pseudo-

code is shown in Alg. 1.

The following reordering algorithms are variants of the

exact minimum degree algorithm.

• Approximate minimum degree ordering (AMD) [6]

• Column approximate minimum degree algorithm (CO-

LAMD) [3]

• Nested Dissection (NESDIS) [7]

• Serial Graph Partitioning and Fill-reducing Matrix Or-

dering (METIS) [8]

• Bucket Heap AMD (BHAMD)

These algorithms are modifications of the Alg. 1 for faster

computation, either using approximations or intelligent data-

structures. The first three methods are state of the art sparse

reordering algorithms available as a sparse matrix library –

SuiteSparse [7]. METIS is available separately or through

SuiteSparse. We additionally propose BHAMD as a simple

alternative to these methods with comparable performance.

We first summarise the existing reordering techniques and

then go on to describe our implementation of BHAMD.

B. Approximate minimum degree ordering

AMD approximates EMD in line 4 of Alg. 1. EMD

updates the node degree values of uneliminated node exactly

after each elimination. AMD on the other hand computes an

upper bound on this value. It uses a heuristic to determine if

the node degree of a node needs to be updated even though its

neighbor was eliminated. The heuristics are based on active

submatrix and worst case fill-in.

C. Column approximate minimum degree ordering

COLAMD is an approximate reordering algorithm opti-

mized for non-symmetrical matrices. While AMD operates

only on symmetric matrices, COLAMD generates the col-

umn permutations without explicitly computing the normal



equations. This is especially helpful for QR factorization

where the normal equations are never created. Though CO-

LAMD was developed for non-symmetric matrices, it can

also be used to order symmetric matrices. It is one of

the reordering algorithms available to CHOLMOD, which

is SuiteSparse’s sparse Cholesky solver [9]. The use of

COLAMD was first suggested by
√
SAM and was later also

used in used in iSAM1.0 [10].

D. Reordering methods based on Graph partitioning

METIS and NESDIS are both graph partitioning based

reordering schemes [8]. They use the same graph parti-

tioner but different minimum degree reordering on each sub-

partition.

METIS includes a reordering routine called

METIS NodeND. It first recursively partitions the graph

and then computes a minimum degree ordering on each

partition. METIS uses its own variant of minimum degree

to reorder each partitioned subgraph.

NESDIS is the reordering strategy based on graph parti-

tioners provided by SuiteSparse. It computes the partitions

using METIS and then uses Constrained Column Approx-

imate Min Degree ordering (CCOLAMD) to compute the

ordering of individual partitions. In CCOLAMD, constraints

can be added to specify specific elimination order. Certain

nodes can be constrained to be eliminated before or after

others. NESDIS uses CCOLAMD to specify that the partition

nodes are to be eliminated only after all nodes in the

subgraph partitioned by it are eliminated. CCOLAMD has

been used in iSAM2.0 to specify that recent variables are to

be eliminated last [11].

E. BHAMD

BHAMD, our variant of EMD, allows eliminating multiple

nodes in a single iteration using heaps. A simple implemen-

tation using heaps, initializes the heap with all the nodes

ordered by node degree. At each step, we extract the node

with minimum node degree, eliminate it, and update its

neighbors. This would be inefficient for a graph with a

large number of nodes. Updates and reinsertion would scale

logarithmically with the number of nodes.

Instead, we initialize the heap with lists where each list

is a bucket of nodes. Each bucket contains nodes with the

same node degree. At each iteration, we extract the list form

the heap, with minimum node degree. This list contains

putative nodes whose node degree may have changed since

last insertion due to other nodes getting eliminated. Hence

we evaluate each node in that bucket. Nodes whose true node

degrees are equal to or less than the current minimum are

eliminated as shown in Alg. 2. If not, the node is inserted

back into a list containing nodes of equivalent node degree

into the heap. The advantage of BHAMD over EMD is being

able to eliminate multiple nodes in a single search step.

IV. EXPERIMENTAL EVALUATION

A. Experiments and Datasets

We evaluated 6 reordering techniques discussed previously

on standard SLAM datasets. In all of our evaluations, we

Fig. 4: Elimination pattern for w10000 data set using

BHAMD. The x axis represents the number of heap queries.

At each query a list is eliminated. y axis shows the statistics

of each list in the heap. The total number of elements at any

point in the heap does not cross 45 even though we begin

with 10000 nodes. It also shows the maximum node degree

for the last node eliminated is little less 160.

Algorithm 2 BHAMD

1: create a set of lists where each list contains nodes with

equal number of neighbors

2: add all lists into a min heap - MH

3: while MH is not empty do

4: bestList = getMinList from MH

5: min = MH.getMinKey

6: for each node nd in bestList do

7: if nd.nodeDegree ≤ min then

8: remove nd

9: add pairwise edges between neighbors of nd

10: else

11: update nd.nodeDegree and push it back into the

correct list

12: end if

13: end for

14: end while

have shown the results of using COLAMD both with J and

with JTJ . We compare the time required to reorder, factor

and solve the graph. For all of these methods, a symbolic

matrix was created to exploit the block structure of the

constraints. A symbolic matrix encodes the sparsity pattern

of a matrix without encoding the literal values. In short, each

value in the symbolic matrix is a boolean encoding whether

the value is zero or non-zero. In the SLAM domain, we

additionally collapse variable nodes that are closely related,

such as the x, y, and theta variables associated with a 2D

robot pose [2]. By collapsing these nodes, we reduce the

storage requirements and computational costs of computing

an ordering.

Reorder time corresponds to time spent computing the

variable reordering while solve time is the time to compute

the sparse Cholesky decomposition. Total time includes



Fig. 5: Reorder, solve and total time on the MAGIC multi robot datasets. Note: Scales are different across figures.

Fig. 6: Reorder, solve and total time on benchmark datasets. The y axis shows time in seconds. The same results are tabulated

on the next page. Some bars are truncated to show details. All numerical results are available in Fig. 7

reorder, solve and other miscellaneous operations such as

code instrumentation, creating the symbolic matrix and un-

permuting the solution. These require similar time across all

methods. The values shown are averaged over 10 runs.

All our tests were run on Intel core i7 computer using the

sparse Cholesky solver in April Robotics Toolkit (ART) [12].

The SuiteSparse libraries were interfaced with ART using

Java Native Interface bindings.

B. Datasets

For our evaluation, we have used standard simulated

datasets such as the Manhattan3500 (also known as

the csw dataset) [13], world10000 [14], City10000 and

CityTree10000 [10]. We created new simulated grid world

datasets with varying numbers of nodes. Real-world datasets

include Victoria park, Intel [15] and Killian Court [16]. These

real world data sets are preprocessed by a front end to

generate loop closures. We have also included graphs from

our MAGIC datasets, including large multi-robot graphs [17].

C. Variable ordering optimization

Given a variable ordering, it is interesting to ask whether

that ordering can be incrementally improved. In other words,

are the variable orderings computed by minimum-degree



(a) csw (b) Intel (c) w10000 (d) City10000 (e) Killian Court (f) Victoria Park (g) CityTree10000

Algorithm csw Intel w10000 City10000 Killian Court Victoria Park CityTrees10000

P, E, N 3500,5598,3.2 875,15605,35.7 10000,64311,12.86 10000,20687,4.14 1462,6571,8.98 7120,10608,2.98 10100,14442,2.86

EMD 68, 84, 178 31, 398, 524 477, 940, 1757 663, 1277, 2052 9, 40, 80 267, 68, 389 360, 132, 562

BHAMD 8, 109, 148 30, 439, 564 91, 1195, 1645 81, 1253, 1439 4, 54, 92 10, 76, 138 16, 133, 219

AMD 7, 79, 114 11, 344, 455 36, 855, 1269 27, 838, 967 4, 44, 81 16, 75, 143 21, 135, 225

METIS 18, 89, 132 16, 827, 1087 31, 985, 1366 63, 706, 876 6, 43, 83 24, 78, 154 37, 191, 294

NESDIS 22, 173, 247 16, 258, 362 42, 930, 1334 76, 872, 1078 7, 42, 82 38, 89, 181 45, 146, 250

COLAMDJ 3, 82, 113 7, 314, 417 43, 1440, 2019 15, 1042, 1167 3, 49, 86 7, 70, 129 10, 129, 209

COLAMDJ
T
J 7, 214, 250 12, 701, 811 40, 4285, 4718 24, 2746, 2883 4, 53, 90 13, 495, 561 39, 4168, 4353

NZ fill-in

EMD 183493 303679 1306555 1147945 93195 202252 290428

BHAMD 194769 314444 1386612 1183202 105408 207378 290587

AMD 178151 275713 1202455 1026152 96928 207321 303743

METIS 204128 281152 1412363 1028779 97895 228574 369146

NESDIS 193519 260179 1307333 1007935 94302 226262 333494

COLAMDJ 181161 268261 1304646 1083914 100437 203441 290435

COLAMDJ
T
J 299219 412798 2567700 1957268 107729 510184 808918

Reorder/solve

EMD 0.82 0.08 0.51 0.52 0.24 3.88 2.73

BHAMD 0.08 0.07 0.08 0.06 0.09 0.14 0.12

AMD 0.10 0.03 0.04 0.03 0.10 0.21 0.16

METIS 0.20 0.02 0.03 0.09 0.14 0.31 0.20

NESDIS 0.13 0.06 0.05 0.09 0.17 0.44 0.31

COLAMDJ 0.04 0.03 0.03 0.02 0.06 0.11 0.08

COLAMDJ
T
J 0.03 0.02 0.01 0.01 0.08 0.03 0.01

Fig. 7: Comparison of various reordering algorithms on standard SLAM datasets (P:number of poses, E:number of edges,

N:average node degree). The top section shows the reorder, solve, total time in ms, taken by each algorithm for each data

set. The middle section shows the fill-in in L after decomposition and the bottom section shows the ratio between reorder

and solve time. COLAMDJTJ has maximum fill-in and worst solve time.

algorithms approximately locally optimal? Or, conversely,

could small additional changes result in significantly better

variable orderings?

In some cases, a variable ordering algorithm makes fairly

arbitrary choices: there may be several variables that have the

same degree. Different variants might select amongst these

differently, with different long-term consequences to fill-in.

Are some tie-breaking strategies better than others?

To explore this question, we generated minimum-degree

orderings using AMD, then iteratively attempted to improve

the orderings. In a framework resembling a genetic search,

we randomly permuted pairs of variables and solved the

resulting system, computing a fitness score as a function of

the fill-in.

The results of our experiments showed that only very small

reductions in fill-in resulted from this optimization process.

Of course, many permutations resulted in worse fill-in, but

even the best fill-in was reduced by at most 0.5% as shown

in Table I.

This experiment provides evidence that small modifica-

tions to minimum-degree type variable ordering algorithms

may not be able to achieve significant improvements. An

experiment like this cannot be conclusive, but it does suggest

that different ideas may be required to improve performance.

Dataset csw Intel KillianCourt

Best nz improvement % 0.5 0.01 0.3

TABLE I: Datasets where fill-in could be reduced using

genetic search.

V. CONCLUSIONS

Timing runs of all reordering algorithms on standard data

sets as well as our new grid world datasets are shown in

Fig. 1, Fig. 5, Fig. 6 and Fig. 7. We summarize the broad

trends observed:

1) With the exception of COLAMD applied to JTJ and

EMD, the performance of the methods are comparable:

They produce similar-quality variable reordering, and the

variation in the computational time required to compute those

orderings is generally very small in comparison to the solve

time.

2) COLAMD with JTJ produces a poor variable reorder-

ing, leading to significant fill-in and slow solve time: The

second section in Fig. 7 shows that fill-in for COLAMD

JTJ is higher than that of other algorithms. It produces on

an average more than 2 times the fill-in compared to other

algorithms. Fig. 1(b) shows that the solve time for COLAMD



JTJ is much slower. COLAMD must be used only on the

Jacobian and not on the normal matrix JTJ .

3) BHAMD, despite its simplicity, is generally competi-

tively in terms of computational time and the quality of the

reordering: It is a viable option, particularly if the more

complex packages are not available.

4) Further development of minimum-degree algorithm

variants may not produce significant reductions in fill-in:

Our attempts to search for better orderings than those com-

puted by AMD consistently resulted in best-case reductions

in fill-in of less than 0.5%

VI. FINAL WORDS

In this paper, we compared reordering and solve times

for various sparse matrix reordering algorithms on standard

SLAM data sets, including simulated, real and multi robot

graphs. We showed a simple algorithm like BHAMD, having

comparative performance to state of the art methods. We

provided empirical results which proved that small varia-

tions in minimum degree algorithms do not decrease fill-in

drastically.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–
349, April 1997.

[2] F. Dellaert, “Square root SAM,” in Proceedings of Robotics: Science

and Systems (RSS), Cambridge, USA, June 2005.

[3] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G.
Ng, “Algorithm 836: Colamd, a column approximate minimum
degree ordering algorithm,” ACM Trans. Math. Softw.,
vol. 30, pp. 377–380, September 2004. [Online]. Available:
http://doi.acm.org/10.1145/1024074.1024080

[4] M. Yannakakis, “Computing the minimum fill-in is NP-complete,”
SIAM Journal on Algebraic and Discrete Methods, vol. 2, no. 1, pp.
77–79, Mar. 1981.

[5] W.F.Tinney and J.W.Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” in Proceeding

of IEEE, no. 55, 1976, pp. 1801–1809.

[6] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: Amd, an
approximate minimum degree ordering algorithm,” ACM Trans. Math.

Softw., vol. 30, pp. 381–388, September 2004. [Online]. Available:
http://doi.acm.org/10.1145/1024074.1024081

[7] T. Davis, “Suitesparse.” [Online]. Available:
http://www.cise.ufl.edu/research/sparse/SuiteSparse//

[8] G. Karypis and V. Kumar, “Metis - unstructured graph partitioning
and sparse matrix ordering system, version 2.0,” Tech. Rep., 1995.

[9] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajaman-
ickam, “Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate,” ACM Trans. Math. Softw.,
vol. 35, pp. 22:1–22:14, October 2008. [Online]. Available:
http://doi.acm.org/10.1145/1391989.1391995

[10] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in
Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Rome; Italy, April 2007. [Online]. Available:
http://www.cc.gatech.edu/ dellaert/pub/Kaess07icra.pdf

[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Intl. J. of Robotics Research, IJRR, vol. 31, pp. 217–236, Feb
2012.

[12] E. Olson, “The APRIL robotics toolkit,” 2010. [Online]. Available:
http://april.eecs.umich.edu

[13] ——, “Robust and efficient robotic mapping,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, June
2008.

[14] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Proceedings of Robotics: Science and

Systems (RSS), Atlanta, GA, USA, 2007.
[15] A. Howard and N. Roy, “The robotics data set repository (radish),”

2003. [Online]. Available: http://radish.sourceforge.net/
[16] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous

localization and map building in large-scale cyclic environments using
the Atlas framework,” International Journal of Robotics Research,
vol. 23, no. 12, pp. 1113–1139, December 2004.

[17] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan,
R. Goeddel, M. Bulic, J. Crossman, and B. Marinier, “Progress to-
wards multi-robot reconnaissance and the MAGIC 2010 competition,”
Journal of Field Robotics, September 2012.


