Dynamic Covariance Scaling for Robust Robot Mapping

Workshop on Robust and Multimodal Inference in Factor Graphs

Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill Stachniss and Wolfram Burgard

University of Freiburg, Germany
Maps are Essential for Effective Navigation
Graph-based SLAM

Robot pose

Constraint
Graph-based SLAM

Robot pose
Constraint
Graph-based SLAM
Graph-based SLAM
Graph-based SLAM

a single outlier ...
Graph-based SLAM

a single outlier ...
Graph-based SLAM

Vegas!!

Paris!!

a single outlier ...
Graph-based SLAM

a single outlier ... ruins the map
Graph-SLAM Pipeline

Front end Validation Back end

Assumption:
No Outliers

Impossible to have perfect validation
SLAM Back End Fails in the Presence of Outliers

1 Outlier

10 Outliers

100 Outliers
SLAM Back End Depends on the Initial Guess
SLAM Back End Depends on the Initial Guess

Good Initial Guess

Bad Initial Guess
Typical Assumptions

- Gaussian assumption is violated
 - Perceptual aliasing
 - Measurement error
 - Multipath GPS measurements
Typical Assumptions

- Gaussian assumption is violated
 - Perceptual aliasing
 - Measurement error
 - Multipath GPS measurements

- Linear approximation is invalid
 - Linearization is only valid if close to optimum
Typical Assumptions in Graph-SLAM

- No outliers
- Good initial guess
- Current methods both independently
- Our method approaches both problems
Typical Assumptions in Graph-SLAM

- No outliers
- Good initial guess
- Current methods solve both independently
- Our method approaches both problems

Our Approach

- Dynamic Covariance Scaling
Our Approach: Dynamic Covariance Scaling

- Successfully **rejects** outliers
- More robust to **bad initial guess**
- Does not increase state space
- Is a robust M-estimator
Standard Gaussian Least Squares

\[X^* = \arg\min_X \sum_{i,j} e_{ij}(X)^T \Omega_{ij} e_{ij}(X) \]
Dynamic Covariance Scaling

\[X^* = \arg\min_X \sum_{i,j} \left(e_{ij}(X)^T \Omega_{ij} e_{ij}(X) \right) \chi^2_{ij} \]

\[X^* = \arg\min_X \sum_{i,j} e_{ij}(X)^T \left(s_{ij}^2 \Omega_{ij} \right) e_{ij}(X) \]
How to Determine s?

$$X^* = \arg\min_X \sum_{ij} e_{ij}(X)^T \left(s_{ij}^2 \Omega_{ij} \right) e_{ij}(X)$$
How to Determine s?

$$X^* = \arg\min_X \sum_{ij} \mathbf{e}_{ij}(X)^T (s_{ij}^2 \Omega_{ij}) \mathbf{e}_{ij}(X)$$

$$\vdots$$

$$s_{ij} = \min \left(1, \frac{2\Phi}{\Phi + \chi^2_{ij}}\right)$$

Closed form approximation of Switchable Constraints with a M-estimator
Dynamic Covariance Scaling

![Graph showing different lines representing squared error, scaling function, and scaled error for different s values.](image)
Dynamic Covariance Scaling

Both have squared error
Dynamic Covariance Scaling

Original error

Scaled error
Dynamic Covariance Scaling

![Graph showing dynamic covariance scaling with linearization](image-url)
Dynamic Covariance Scaling
Robust SLAM with Our Method

Ground Truth

Initialization

Gauss Newton

Our Method

Sphere2500 (1000 Outliers)

Manhattan3500 (1000 Outliers)
Dynamic Covariance Scaling with Front-end Outliers

Bicocca multisession dataset
Dynamic Covariance Scaling with Front-end Outliers

Lincoln-labs multisession dataset
Robust SLAM with Our Method

Dynamic Covariance Scaling

Standard Gauss-Newton

Victoria Park Initialization (Odometry)
Robust SLAM with Our Method

Dynamic Covariance Scaling

Standard Gauss-Newton
Robust SLAM with Our Method

Dynamic Covariance Scaling

Standard Gauss-Newton
Dynamic Covariance Scaling with Outliers in Victoria Park

- DCS recovers correct solution
- GN fails to converge to the correct solution even for outlier-free case
Robust Visual SLAM with Our Method

- 3D grid worlds of different sizes
- Robot perceives point landmarks
Robust Visual SLAM with Our Method

- ~1000 camera poses
- ~4000 features
- ~20K constraints

- ~5000 camera poses
- ~5000 features
- ~100K constraints
Robust Visual SLAM with DCS

Ground Truth

Initialization (Odometry)

Simulated Stereo (Bad initial guess)

Levenberg-Marquardt (100 iterations)

Our Method (15 iterations)
Robust Visual SLAM with DCS

Ground Truth

Initialization (Odometry)

Simulated Stereo (Bad initial guess)

Levenberg-Marquardt (150 iterations)

Our Method (15 iterations)
Robust Visual SLAM with DCS

- DCS recovers correct solution in the presence of up to **25% outliers**
- LM fails to converge to the correct solution even for **outlier-free cases**
Convergence – 1000 Outliers

- **Switchable Constraints**
- **Dynamic Covariance Scaling**

Manhattan3500

Sphere2500

![Graphs showing convergence with different constraints](image-url)
Convergence – 1000 Outliers

Switchable Constraints

Dynamic Covariance Scaling

Manhattan3500

Sphere2500
Convergence with Outliers

Switchable Constraints

Dynamic Covariance Scaling

Switchable Constraints (SC) Manhattan Olson Dynamic Covariance Scaling (DCS)

Iteration 0
Conclusion

- **Rejects outliers** for 2D & 3D SLAM
- **No increase in computational complexity**
- More robust to **bad initial guess**
- Now **integrated in g2o**
Thank you for your attention!