Variable reordering strategies for SLAM

Pratik Agarwal and Edwin Olson

University of Freiburg and University of Michigan
Graph based SLAM

- Linearized system of constraints $Ax = b$

$A \Delta x = L L^T \Delta x = b$

24 times more zeros
Graph based SLAM

- Linearized system of constraints $Ax = b$
Reordering

Reordering the variables x, y, z
Reordering is essential for SLAM

Bad ordering: 10s

Good ordering: 0.1s

Good ordering: 100 times faster
Contribution

- Find best state-of-art method
- A simple easy alternative

All methods compute identical x
Exact minimum degree (EMD)

- Remove node with min edges
- Connect neighbors
Our method: bucket heap AMD

Advantage over EMD:

- Single query - multiple vertex elimination

How?

- Lists of vertices with similar #edges
BHAMD in action
BHAMD in action

Key	Vertices
2 | 1, 3, 4
3 | 2
4 | 5*
BHAMD in action
BHAMD in action

Multiple vertices eliminated
BHAMD on a 10,000 node graph

- EMD - 10,000 steps
- BHAMD - 107 steps
- Max heap size in BHAMD 42
State-of-the-art techniques

- **AMD** Approximate Minimum Degree
- **COLAMD** Column Approximate Minimum Degree
- **NESDIS** Nested Dissection
- **METIS** Serial Graph Partition
Evaluation – reordering time

- EMD is slowest
Evaluation – solve time

- COLAMD on A is slowest
Further room for improvement?

Ideally
- consider all possible orderings

1000 nodes → 10^{2567} orderings

Instead
- Local changes in existing orderings

maximum improvement of 0.5%
(with 1 week compute time)
Conclusion

1. All methods comparable EMD & COLAMD on A

2. BHAMD - simple yet competitive

3. Negligible improvement with small changes
Questions
Reordering matrix - P

$Ax = b$

$(PA)x_p = Pb$

$x = P^{-1}x_p$

P^{-1} is easy, since $P^{-1} = P^T$

- Computing the best reordering matrix P is NP hard
- Heuristics work quite well
Toy example

Bad ordering

\[J = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]

\[A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]

\[L = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]

Good ordering

\[J_r = \begin{pmatrix}
5 & 2 & 3 & 4 & 1 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]

\[A_r = \begin{pmatrix}
5 & 2 & 3 & 4 & 1 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]

\[L_r = \begin{pmatrix}
5 & 2 & 3 & 4 & 1 \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{pmatrix} \]
Multiple Min Degree (MMD) vs BHAMD

- **Similarity**
 - multiple elimination

- **Difference**
 - MMD computes and eliminates independent nodes
 - MMD is still exact unlike BHAMD
But I use CSparse with COLAMD

- It calls AMD if the matrix is PSD
- Be careful when opening the box
Graph based SLAM

- Linearized system of constraints $Ax = b$

24 times sparser