Evaluating SPARQL Subqueries Over P2P Overlay Networks

Liaquat Ali, Georg Lausen
University of Freiburg
Email: {ali, lausen}@informatik.uni-freiburg.de

Abstract—The introduction of subqueries is one of the most interesting features included in the latest SPARQL 1.1 specification. Existing distributed RDF storage and querying systems have not studied the evaluation of this newly included query feature. The evaluation of subqueries in distributed environment may be very inefficient and expensive in terms of query response time and bandwidth usage, particularly for the correlated subqueries, where the inner part is evaluated once for each solution of the outer query. In this paper, we study the problem of evaluating SPARQL subqueries over RDF data stored in 3nuts p2p network. We study semijoin based optimization technique, and transformation algorithms to transform correlated queries to equivalent uncorrelated ones, that would improve the efficiency of nested query evaluation in distributed environment.

I. INTRODUCTION

Nesting of queries is one of the most powerful features in a query language, which provides the possibility of writing a query in a single expression that uses the output of other queries. The current working draft of SPARQL 1.1 allows a SELECT or AGGREGATE query within the graph pattern of another query, and introduces graph patterns \{P \text{ FILTER EXISTS/¬EXISTS } \{P'\}\} where \(P' \) is a graph pattern to test, as a possible type of subquery. Other nesting features have also been gradually incorporated into some SPARQL implementations, like ARQ and Virtuoso.

The authors in [1] have considered the incorporation of SQL subquery features, which contains the operators IN, EXISTS, SOME, and ALL, into SPARQL. They also proposed syntax and semantics for subqueries in SPARQL by presenting the corresponding extensions for subqueries in the widely accepted formalization of SPARQL in [2].

Existing distributed RDF storage and querying systems like RDFPeers [3], Atlas [4], [5], BabelPeers [6], and GridVine [7] use p2p overlay networks to store and query RDF triples in a distributed manner. These RDF database systems store three copies of each triple indexed by the subject, predicate, and object. Each peer stores the triples it receives in its local database such as relational database. These distributed RDF systems have not considered the problem of distributed evaluation of SPARQL subqueries so far. The evaluation of SPARQL subqueries, particularly correlated queries, in a distributed environment is much more complex and expensive than in centralized ones, because a large number of parameters affect the performance of these queries. In particular, the tuples/triples in these systems are distributed on multiple nodes, thereby inducing communication overhead costs.

For example, consider the following SPARQL correlated subquery in Listing 1, where variable \(?\text{Age1}\) is shared by both outer and inner query blocks.

\[
\text{SELECT } ?X \\
\text{WHERE } \{ \\
?X \text{ type Students} . \\
?X \text{ age } ?\text{Age1} \\
\text{FILTER}(\text{NOT EXISTS } \{ \text{SELECT } ?Y \\
\text{WHERE } \{ ?Y \text{ type Students} . \\
?Y \text{ age } ?\text{Age2} \\
\text{FILTER } (\text{?Age1 } > ?\text{Age2}) \})
\}
\]

Listing 1. SPARQL query returning the youngest student

The existing distributed RDF systems evaluate the triple patterns topdown, and for the evaluation of a correlated query, the semantics of SPARQL query prescribe that the triples of the outer query be substituted in turn into the subquery block in the filter constraint. In the given query in Listing 1, for each result of the outer query block, the inner query block is evaluated once to output the student for which the filter constraint evaluates True (i.e., the youngest student). The nested iteration method [8] used for the evaluation of SPARQL correlated queries may be very expensive in distributed RDF storage and querying systems.

For the efficient evaluation of correlated SPARQL queries on distributed RDF system, an obvious optimization, we will use, is to decorrelate the query, i.e., the inner query block contains no variables from the outer query block. Thus, the inner query block needs to be evaluated only once. In Section IV we will apply some transformations, to rewrite a correlated query to an equivalent, uncorrelated one. For example, the correlated query in Listing 1 can be transformed to the following equivalent, uncorrelated query in Listing 2.

\[
\text{SELECT } ?X \\
\text{WHERE } \{ \\
?X \text{ type Students} . \\
?X \text{ age } ?\text{Age1} \\
\text{FILTER}(\text{?Age1 } <= \text{ALL } \{ \text{SELECT } ?Y \\
\text{WHERE } \{ ?Y \text{ type Students} . \\
?Y \text{ age } ?\text{Age2} \})
\}
\]

Listing 2. SPARQL query returning the youngest student

As the peers in existing distributed RDF storage and querying systems use relational database, to store the triples they

1http://www.w3.org/TR/sparql11-query/
are responsible for, the resulting uncorrelated queries, which
contain the SQL nested query operators SOME, and ALL in
their bodies, can be easily evaluated on these peers. It gives
now a cheaper approach to project the variable ?Age2, in
the query in Listing 2, by evaluating the inner query block
on corresponding peers, and to move this projection to sites
responsible for the evaluation of outer query. In the evaluation
of outer query, if the value of the variable ?Age1 of any tuple
is less than or equal to the values projected by the variable
?Age2, then the corresponding student is inserted into the result.

Another optimization technique, we will use for the efficient
processing of correlated queries is based on the idea of using
semijoin, i.e., project the inner query block on its correlated
variable, and to move this projection to sites responsible for
the outer query block to compute the join.

In this paper, we study the distributed evaluation of
SPARQL subquery features, included in the latest SPARQL
1.1 working draft, over RDF data stored on top of p2p
overlay networks. We use the distributed SPARQL query
evaluation scheme in our 3rdf system [9], and extend it for
the evaluation of SPARQL subqueries. We apply semijoin
based optimization technique, and techniques based on the
transformation of correlated queries to equivalent, uncorrelated
once which are evaluated by underlying query subsystems
more efficiently.

The remainder of the paper is organized as follows: We start
with the study of several proposals that have been presented for
the introduction of subqueries in SPARQL in Section II. We
use the 3nuts p2p network for a distributed application which
is briefly described in Section III, this section also describes
our assumptions regarding data model and query language.
Section IV then presents the distributed query evaluation, and
optimization strategies for SPARQL subqueries. Finally, in
Section V we make a conclusion.

II. RELATED WORK

The current working draft of SPARQL 1.1 offers a feature
related to the introduction of subqueries in SPARQL to allow
a SELECT query within the graph pattern of another query.
Such SELECT queries can also use aggregate functions. A
reasonable motivation behind this feature is to reduce the cost
of join in the query. The inner query block is evaluated first,
and then is joined with the result of the outer query. Variables
projected by the inner query block are only visible to the outer
query in these nested queries.

For example, consider the SPARQL nested query in List-
ing 3. Evaluating group-by in the inner query block, and then
computing its join with the outer query can result a significant
reduction in the cost of the join.

The second feature it presents in relation to the subquery,
is the usage of EXISTS/¬EXISTS operators, to allow a graph
pattern to be a type of filter constraint, i.e., \{ P \ FILTER
EXISTS/¬EXISTS \{ P\} \}. The above expression in the filter
constraint tests the presence or absence of a match to the graph
pattern P. For example, the filter constraint, in the SPARQL
nested query in Listing 1, tests the absence of a student older
then any student returned in the inner query block. This class
of subqueries always share correlated variables in the inner
and outer query blocks.

In real life practice, SPARQL implementations like ARQ,2
the query engine for Jena, and Virtuoso provide supports for
the described subquery features, introduced in the current
working draft of SPARQL 1.1.

The authors in [1] have considered the known operators like
IN, SOME, ALL, and EXISTS used in SQL nested queries,
and utilized them in filter constraints, to introduce SPARQL
nested queries. The set membership operator IN, is used to
find a value in a result set of the corresponding inner query.
The quantifier operators, SOME and ALL, are used with scalar
comparison operators (e.g., >), to compare a value with some
or all the data values returned by the inner query block. For
eexample, the given query in Listing 2, gives the student
younger then all students returned by inner query block, i.e.,
the youngest student.

The introduction of existential operators EXISTS/¬EXISTS
in [1] are almost the same as proposed in the current working
draft of SPARQL 1.1, which verifies the presence or absence
of a match to the inner graph pattern. They also proposed the
syntax and semantics for subqueries in SPARQL, for that they
presented the corresponding extensions for subqueries in the
widely accepted formalization of SPARQL in [2].

Rewriting queries is a well-known technique applied for
optimization of SQL queries [8]. However, to the best of our
knowledge, in this line of work the intention of analyzing
subqueries is to remove a level of nesting and not to rewrite
the subquery to remove correlation of variables inside the
subquery as we shall do.

The evaluation of newly introduced SPARQL subquery fea-
ture is not addressed by existing distributed RDF storage and
querying systems RDFPeers [3], Atlas [4], [5], BabelPeers [6],
and GridVine [7] so far. The evaluation of subqueries, cor-
related queries in particular, may be very complex and ex-
pensive in distributed environment. We extend the distributed
SPARQL query evaluation scheme in our 3rdf system [9]
for the evaluation of SPARQL subqueries. The processing
of correlated queries in our system are optimized by using
semijoin based technique, and through transformations to
equivalent, uncorrelated queries.

\begin{verbatim}
SELECT ?Email ?Numberofcourses
WHERE { ?X emailAddress ?Email .
?X type Student .
{ SELECT ?X (COUNT (?course) as ?Numberofcourses) WHERE { ?X takesCourse ?course } GROUP BY ?X }
}
\end{verbatim}

Listing 3. SPARQL query returning email addresses, and the number of
courses they attend for all students.

\[\text{http://incubator.apache.org/jena/documentation/query/sub-select.html}\]
III. System model and Data model

In this section we elaborate on our system architecture and also describe our assumptions regarding data model and query language used in the system.

A. System model

We assume to have n nodes participating in the underlying 3nus p2p network [10]. All of these nodes have some knowledge stored as RDF triples. The 3nus overlay network establishes a distributed search tree providing point and range queries in $O(\log n)$ routing hops with high probability where n denotes the number of peers in the network. In the 3nus network, each 3nus peers has a local view on the Search Tree which enables the peer the search in the distributed tree of the entire network. It supports two basic operations: Get(key) for searching a certain key and retrieving the associated data items and Put(key, value) for storing new data items. Here, the search functionality of the 3nus network in the search tree is used to place triples at the correct peers responsible for the corresponding index keys and on the other hand for downloading triples for a certain index key from the responsible peers. The RDF data, supposed to be distributed by a peer in the network, is converted to tuples (key, triple) in order to insert them into the network with the Put-operation.

B. Data model

Each node in our system can publish RDF resources in the network. In the RDF data model, resources are expressed as subject-predicate-object expressions, called triples in RDF terminology. The subject in a RDF triple denotes the resource, and the predicate expresses a relationship between the subject and the object. Let U, and L represent URIs and Literals in RDF, a triple $(v_1, v_2, v_3) \in U \times U \times (U \cup L)$ over certain resources U, and L is called a RDF triple [11].

Each node in our system can also submit SPARQL queries to extract data from RDF databases stored in the network. These queries are basically composed of triple patterns. Let U, L, and V represent URIs, Literals, and Variables, a triple $(v_1, v_2, v_3) \in (U \cup V) \times (U \cup V) \times (U \cup V \cup L)$ is called a SPARQL triple pattern [2]. These triple patterns are matched against the RDF triples in the input database when the query is evaluated against some RDF database.

IV. Query Evaluation

We extend the distributed evaluation of RDF conjunctive triple pattern queries considered by the existing approaches RDFPeers [3], Atlas [4], [5], BabelPeers [6], and GridVine [7] with the recently included SPARQL 1.1 subquery features. To understand the evaluation and optimization of SPARQL subqueries in our 3nus system, we briefly describe first, an abstract syntax of SPARQL subqueries. In the following we restrict ourselves on SPARQL SELECT queries which can appear in the inner query block of a subquery.

A. An Abstract Syntax for SPARQL Subqueries

Let UL represent the set of URIs and literals in RDF and V be a set of variables disjoint from UL. We will start with an abstract syntax of SPARQL SELECT queries, and then extend it with the definition of SPARQL subqueries.

Definition 1 (Filter Constraint): Let $?x, ?y \in V$ be variables and $a, b \in UL$, and θ be a scalar comparison operator ($=, \neq, <, \leq, >, \geq$) then we define a filter constraint recursively as follows.

- The expressions $?x \theta a$, $?x \theta ?y$, $a \theta b$, and $\text{bound}(?x)$ are filter constraints.
- If R_1 and R_2 are filter constraints, then $\neg R_1$, $R_1 \wedge R_2$, and $R_1 \lor R_2$ are filter constraints.

Using the previous definition, now we can define the syntax of SPARQL graph patterns.

Definition 2 (SPARQL Graph Pattern): A SPARQL graph pattern is built recursively according to following rules.

- A triple pattern $t \in UV \times UV \times LUV$ is a graph pattern.
- If G is a graph pattern and R is a filter constraint, then $G \quad \text{FILTER} \quad R$ is a graph pattern.
- If G_1, G_2 are graph patterns, then $G_1 \quad \text{UNION} \quad G_2$, $G_1 \quad \text{OPT} \quad G_2$, and $G_1 \quad \text{AND} \quad G_2$ are graph patterns.

The syntax of a SPARQL SELECT query is defined as follows.

Definition 3 (SPARQL SELECT Query): Let G be a SPARQL graph pattern, and let $S \subset V$ be a finite set of variables. A SPARQL SELECT query is an expression of the form $\text{SELECT}_{S}(G)$.

Now we are ready to define the syntax of SPARQL subqueries based on the definition in [1].

Definition 4 (SPARQL Subquery): Subqueries as graph patterns: If $\text{SELECT}_{S}(G)$ is a SPARQL SELECT query, then the expression $(\text{SELECT}_{S}(G))$ is a graph pattern.

Subqueries in filter constraints: If $v \in (UL \cup V)$, θ is a scalar comparison operator ($=, \neq, <, \leq, >, \geq$), and $\text{SELECT}_{S}(G)$ is a SPARQL SELECT query, then the expressions $(v \theta \text{SOME}(\text{SELECT}_{S}(G)))$, $(v \theta \text{ALL}(\text{SELECT}_{S}(G)))$, $(v \theta \text{IN}(\text{SELECT}_{S}(G)))$, EXISTS
(SELECT_S(G)), and ¬EXISTS (SELECT_S(G)) are filter constraints.

B. Evaluation and Optimization of SPARQL subqueries

Subqueries with correlated variables inside filter constraints are more expensive to be processed than subqueries appearing as a graph pattern.

1) Evaluating Subqueries as graph patterns: These subqueries allow a SELECT query in the place of graph patterns. In these subqueries only the variables projected by the inner query blocks are visible to the outer query, and thus do not share correlated variables. The evaluation of these queries is very simple, evaluate both query blocks independently and join their solutions. For example, for the query in Listing 3, we evaluate the inner query, determine the aggregate value (number of courses) for each student, evaluate the outer query, and then join their solutions to get the email address, and number of courses they have taken.

2) Evaluating Subqueries in filter constraints: The proposed syntax for the SPARQL subqueries [1] extends the SPARQL simple filter constraint defined in Definition 1 to nested filter constraints defined in Definition 4 for the introduction of SPARQL subqueries. For example, the queries in Listing 1, and Listing 2 use SPARQL SELECT queries as nested filter constraints.

The current working draft of SPARQL 1.1, and implementations like ARQ have considered only the EXISTS (SELECT_S(G)), and ¬EXISTS (SELECT_S(G)) nested filter constraints for the introduction of this type of subqueries. We study also only the evaluation of subqueries in our 3rdf system, which are part of the SPARQL 1.1.

The use of EXISTS and ¬EXISTS in the above nested filter constraints needs correlated variables to make sense, means there is some variable occurring in both the inner query block in filter constraint (e.g., EXISTS(SELECT_S(G))), and the outer query block. The semantics of SPARQL query prescribe that the inner query block of correlated query is evaluated once for each solution of the outer query. For example, consider the correlated query in Listing 1 where the inner query block is evaluated for each value of the variable ?Age1 in the outer query. Since the triples are placed on multiple nodes in distributed RDF systems, the evaluation of SPARQL correlated queries in these systems may be very costly in term of query response time and bandwidth usage.

As the peers in the distributed RDF systems evaluates the triple patterns of a SPARQL query on their local relational databases, the processing of a correlated query would be made efficient, by transforming it to an equivalent uncorrelated query, which contains SQL operators like SOME, ALL in its body. The resulting uncorrelated query can now be easily evaluated on responsible peers. For the efficient evaluation of correlated queries in our 3rdf system, we first transform it to an equivalent, uncorrelated nested query. The inner query block of resulting query is now evaluated independently, and then used to filter the solutions of the outer query block.

Definition 5 (Query equivalence): Let D be an RDF database and G_1, G_2 two graph patterns. G_1 and G_2 are equivalent, i.e., $G_1 \equiv G_2$, if and only if $\langle G_1 \rangle_D = \langle G_2 \rangle_D$. Two queries $Q = (\text{SELECT}_S(G_1))$, and $Q' = (\text{SELECT}_S(G_2))$ are equivalent, i.e., $Q \equiv Q'$, if and only if $G_1 \equiv G_2$. The following propositions are based on transformations in [12], however the consequences of removing correlated variables are not considered in that paper. The transformations of EXISTS and ¬EXISTS correlated queries to their equivalent, uncorrelated forms are given as follows.

Proposition 1 (Transforming EXISTS queries): Let G be a graph pattern of the form $(G_1 \text{ FILTER } (\exists \text{SELECT}_S(G_2 \text{ FILTER } (v \theta ?S_2))))$ where $v \in (UL \cup V)$, $Q_2 = (\text{SELECT}_S(G_2))$, and θ is the inverse operator to θ. Then, G is equivalent to the following graph pattern.

- $(G_1 \text{ FILTER } (v \theta \text{ SOME } (Q_2)))$

Proposition 2 (Transforming ¬EXISTS queries): Let G be a graph pattern of the form $(G_1 \text{ FILTER } (\neg \exists \text{SELECT}_S(G_2 \text{ FILTER } (v \theta ?S_2))))$ where $v \in (UL \cup V)$, $Q_2 = (\text{SELECT}_S(G_2))$, and θ is the inverse operator to θ. Then, G is equivalent to the following graph pattern.

- $(G_1 \text{ FILTER } (v \theta \text{ ALL } (Q_2)))$

Example 1: Using the transformation in Proposition 2, we can transform the correlated query in Listing 1 to an equivalent, uncorrelated query in Listing 2. The inner query block in Listing 2 can now be processed independently to project the variable ?Age2, and this projection is sent to the site responsible for the outer query to filter its results.

Listing 4. SPARQL query returning the students whose advisors have some publications

Another complementary approach, we use for the efficient processing of correlated queries is based on the idea of using semijoin. Let A and B represent the outer and inner query blocks of a correlated query respectively, the semijoin of A by B on condition J is defined as the subset of $A - tuples$ for which there are matching $B - tuples$ that satisfy J, i.e., Semijoin $(A, B; J) = \{a \in A \mid \exists b \in B (J(a, b))\}$.

For the distributed evaluation of correlated SPARQL queries, it may be cheaper to project the inner query block on the correlated variable, and to move this projection to peers responsible for the outer query block. For EXISTS queries, the semijoin of outer query block by inner block is produced by outputting the tuples of the outer block as soon as the first matching tuple of the inner block is encountered, and then advance to the next tuple of the outer query block. For example, for the query in Listing 4, the inner query block is
projected on the correlated variable \(?\text{Adv}\), and this projection is moved to the site for the outer query block to compute the join. In the same way as for the processing of \(\neg\text{EXISTS}\) queries, tuples of the outer query block are output if no matching tuple is found in the inner query block.

C. Query processing

We extend the query processing algorithm adopted in our 3rdf system [9], where the triple patterns contained in the query are iteratively resolved by a chain of nodes. In the process, each node adds to an intermediate result all triples of its local database, which are qualified for the evaluated query so far. The last node in the line of nodes then has the complete result and returns it to the requesting node. We restrict ourselves to the processing of SPARQL subqueries to depth one. As we use the transformation functions to remove the correlation, the query blocks of resulting uncorrelated queries can be processed independently. The query request takes the parameters \((id, t_i, Q_1, Q_2, C, I, IP(p))\) where \(id\) denotes the query \(id\), \(t_i\) is the currently active triple pattern, \(Q_1\) represent the outer query block, \(Q_2\) is the inner query block, \(I\) accumulates the intermediate result for \(Q_1\), \(C\) accumulates the intermediate result for \(Q_2\), \(IP(p)\) is the IP address of node \(p\) that posed the query. Initially, \(t_i\) is the first triple pattern in the inner query block with \(i = 1\), \(Q_2\) contains all triple patterns except \(t_i\), \(C\) and \(I\) are empty.

The node, which initiates a new SPARQL nested query request, routes the query request to node \(r_i\) through prefix search using one of the constants in \(t_i\). When node \(r_i\) receives the query request, it first resolves the triple pattern \(t_i\) with a local relational query on the local triple table \(R\), i.e., it computes the relation \(T = \pi_X(\sigma_{SC(R)}(R))\) where \(SC\) is a selection condition and \(X\) represents the positions of variables. For example, if \(t_i\) is \((s_{i_1}, p_{i_1}, o_{i_1})\) then \(T = \pi_{\text{subject}}(\sigma_{\text{predicate}}=p_i, \text{object}=o_i)(R)\). Then, \(r_i\) computes a new relation with intermediate results \(C = \pi_S(C \bowtie T)\) where the set \(S\) identifies the attributes of \(C\) and \(T\) that exist in answer variables, or are needed for the evaluation of the remaining triple patterns. If \(C\) is not empty then \(r_i\) sends the query message \((id, t_{i+1}, Q_1, Q_2, C, I, IP(p))\) to the node responsible for the evaluation of the next triple pattern \(t_{i+1}\).

When the last node for the evaluation of inner query \(Q_2\) is reached, and the last triple pattern in \(Q_2\) is evaluated, it sets \(t_i\) as the first triple pattern in the outer query block \(Q_1\), and sends the message to gather with the intermediate result \(C\), generated for \(Q_2\), to the node responsible for \(t_i\). The triple patterns in \(Q_1\) are iteratively evaluated by chain of nodes, in a same way described for the processing of query block \(Q_2\), and intermediate results are stored in \(I\). As \(Q_1\) is the outer query, it may use the results of the inner query \(Q_2\), accumulated in \(C\), to filter out its results, during the evaluation of \(Q_1\). When the last node for the processing of \(Q_1\) is reached, it creates the query result and sends it back to the start node \(p\) using \(IP(p)\).

Example 2: Consider the evaluation of SPARQL correlated subquery in Listing 1. We will first transform it to an equivalent, uncorrelated query in Listing 2, and then evaluate it on our overlay network. Let \(r_1, r_2\) be the nodes responsible for the evaluation of the two triple patterns in the inner query block \(Q_2\), and \(r_3, r_4\) be the nodes responsible for the evaluation of the triple patterns in the outer query \(Q_1\). When \(Q_2\) is evaluated by nodes \(r_1\) and \(r_2\) respectively, newly computed intermediate result \(C\) to gather with the remaining query block \(Q_1\) is sent to the node \(r_3\), responsible for the evaluation of the first triple pattern in \(Q_1\). After processing the first triple pattern in \(Q_1\) by node \(r_3\), node \(r_4\) evaluates the second triple pattern of \(Q_1\), and filters out results using the values in \(C\). Finally, node \(r_4\) sends the result back to the start node \(p\).

V. Conclusions

In this paper, we studied the problem of distributed evaluation of SPARQL subqueries over p2p network. We extended the evaluation of RDF conjunctive triple pattern queries in current distributed RDF systems with the newly included SPARQL subquery features. Due to the distributed placement of triple on multiple peers, the processing of correlated queries in these systems may be very expensive in terms of query response time and bandwidth usage. We applied optimization techniques, based on the idea of using \texttt{semijoin}, and transformation of correlated queries to equivalent, uncorrelated queries, in order to make the distributed evaluation of nested queries efficient.

REFERENCES

