
Learning Cost Functions for Mobile Robot Navigation

in Environments with Deformable Objects

Barbara Frank Markus Becker Cyrill Stachniss Wolfram Burgard Matthias Teschner

Abstract— The ability to reliably navigate through their
environment is an important prerequisite for truly autonomous
robots. In this paper, we consider the problem of path planning
in environments with non-rigid obstacles such as curtains or
plants. We present an approach that combines probabilistic
roadmaps with a physical simulation of object deformations to
determine a path that optimizes the trade-off between the de-
formation cost and the distance to be traveled. We describe how
our approach utilizes Finite Element theory for calculating the
deformation cost. Since the high computational requirements of
the corresponding simulation prevent this method from being
applicable online, we present an approximative approach that
uses a preprocessing step to determine a deformation cost
function for each object. This cost function allows us to estimate
the deformation costs of arbitrary paths through the objects and
is used to evaluate the trajectories generated by the roadmap
planner online. We present experiments which demonstrate that
the resulting algorithm is highly accurate and at the same
time allows to quickly calculate paths in environments with
deformable objects.

I. INTRODUCTION

Path planning is one of the fundamental problems in

robotics, and the ability to plan collision-free paths is a pre-

condition for numerous applications of autonomous robots.

The path planning problem has traditionally received consid-

erable attention in the past and has been well-studied. The

majority of approaches, however, has focused on the problem

of planning paths in static environments and with rigid

obstacles [16, 7, 17]. In the real world, not all obstacles are

rigid and considering this knowledge can enable a robot to

accomplish navigation tasks that otherwise cannot be carried

out. For example, in our everyday life we deal with many

deformable objects such as plants, curtains, or cloth and

we typically utilize the information about the deformability

of objects when planning a movement. As a motivating

example, consider the situation depicted in Figure 1, in which

the robot needs to pass through a curtain to move from its

current position to the goal location since no other path exists

in the environment. In this particular situation, traditional

approaches that do not take the deformability of objects

into account, will fail since no collision-free path exists. In

contrast to this, the approach presented in this paper is able

to determine the deformation cost introduced by passing the

curtain and to utilize this information during path planning.

The key idea of our approach is to use a heuristic function

to estimate the deformation cost, which allows the robot to

perform the necessary calculations online.

All authors are with the Department of Computer Science, University of
Freiburg, 79110 Freiburg, Germany.

{bfrank,mbecker,stachnis,burgard,teschner}@informatik.uni-freiburg.de

Fig. 1. Path planning in an environment with a deformable object. The
robot (shown in red) deforms the curtain on its path to the goal.

One potential method of taking deformations of objects

into account is by generating trajectories using a method

such as probabilistic roadmaps (PRM) [15] and considering

deformable objects as free space. When answering path

queries, the planner has to simulate the deformation of

the non-rigid objects resulting from the interaction with

the robot. However, performing an appropriate simulation

typically requires significant computational efforts which

makes such an approach unsuitable for online trajectory

planning. Therefore, we propose an approach to learn an

approximative deformation cost function in a preprocessing

step. The advantage of our method is that this function can

be evaluated efficiently during planning. In this way, our

approach reduces the time to solve a path query from several

minutes to a few hundred milliseconds. The assumption made

throughout this paper is that the robot can deform but cannot

move objects in the environment. Additionally, we neglect

the interactions between different deformable objects.

The contribution of this paper is an approach to mobile

robot path planning that explicitly considers deformable

objects in the environment. It employs the probabilistic

roadmap method and learns a deformation cost function

using a physical simulation engine that is based on Finite

Element theory. Our approach trades off the travel cost with

the deformation cost when answering path queries and can

be executed online.

This paper is organized as follows: After discussing related

work, we present our technique to compute the deforma-

tions of objects by means of physical simulation. We then

describe how to plan a path in presence of deformable

objects. Additionally, we describe our approximation of the

deformation cost function. Finally, we present experiments

that illustrate the advantages of our approach compared to

previous methods.

II. RELATED WORK

The majority of approaches to mobile robot path planning

assumes that the environment is static and that all objects are

rigid [16, 15, 3]. Recently, several path planning techniques

for deformable robots in static environments have been pre-

sented [4, 10, 14]. In the context of deformable objects, the

underlying model has a substantial influence on the accuracy

of the estimated deformations as well as on the performance

of the planner. One typically distinguishes between geo-

metrically and physically motivated approaches. Geometric

approaches such as the free-form deformation (FFD) can

be computed efficiently. For example, the FFD method of

Sederberg and Parry [21] is based on trivariate Bernstein

polynomials and allows for deformation by manipulating the

control points.

To represent non-rigid objects and to calculate deforma-

tions, mass-spring systems have been frequently used. They

are easy to implement and can be simulated efficiently.

Whereas such models are able to handle large deformations,

their major drawback is the tedious modeling as there is

no intuitive relation between spring constants and physical

material properties in general [19]. Finite Element Methods

(FEMs) reflect physical properties of the objects in a better

way and allow for a more intuitive modeling since they

require only a small number of parameters. The disad-

vantage of FEMs is the computational resources required

to calculate deformations. In our current system we there-

fore use the computationally efficient co-rotational Finite

Element approach of Mueller and Gross [18] and Hauth

and Strasser [11] which avoids nonlinear computations and

therefore can handle large deformations.

In the context of path planning, Kavraki et al. [14]

developed the f-PRM-Framework that is able to plan paths

for flexible robots of simple geometric shapes such as surface

patches [13] or simple volumetric elements [2]. They apply

a mass-spring model to compute deformations. The planner

selects the deformation of the robot that minimizes its de-

formation energy. Similar to this technique, Gayle et al. [10]

presented an approach to path planning for a deformable

robot that is based on PRMs. To achieve a more realistic

simulation of deformations they add constraints for volume

preservation to the mass-spring model of the robot. Bayazit

et al. [4] also studied planning for a deformable robot. Their

algorithm proceeds in two steps. First, an approximate path

is found in a probabilistic roadmap and in the next step,

this path is refined by applying a free-form deformation to

the robot and hence avoiding collisions with obstacles. This

deformation method can be computed efficiently but is less

accurate than physically motivated models. In contrast to our

approach, these planners deform the robot rather than the

obstacles to avoid collisions.

An approach to planning in completely deformable en-

vironments has been proposed by Rodrı́guez et al. [20].

They employ a mass-spring system with additional physical

constraints for volume-preservation [23] to enforce a more

realistic behavior of deformable objects. They use rapidly

Fig. 2. Different levels of representation for a deformable object (left) in the
simulation environment: fine surface mesh (middle) and coarse tetrahedral
mesh (right).

exploring random trees and apply virtual forces to expand the

leaves of the tree until the goal state is reached. The obstacles

in the environment are deformed through external forces

resulting from collisions with the robot. The interesting

aspect of this approach is that it is able to handle both

robot deformations and deformations of obstacles in the

environment.

All techniques mentioned above, however, require substan-

tial computational resources and cannot be executed online

in general. In contrast to this, our approach can efficiently

answer path queries by estimating potential deformations

of objects in a preprocessing step. This is achieved by

approximating a deformation cost function which is then

considered during the planning process. Furthermore, our

deformable model is based on FEM, which allows for more

accurate deformations.

III. SIMULATION OF DEFORMABLE OBJECTS

To consider non-rigid obstacles in the environment during

planning, we need a model that allows us to compute the

deformations given an external force. In this section, we

describe how we achieve a physically realistic simulation of

object deformations. We will first introduce the co-rotational

Finite Element model. Then we describe how to detect

collisions between deformable objects and the robot and how

to compute contact forces resulting from collisions. Finally,

we introduce the cost resulting from a deformation.

Our simulation system proceeds as follows: in each time

step, it computes deformations and unconstrained motions

of objects, then it detects collisions, computes contact forces

for colliding points, and finally corrects the unconstrained

motion with appropriate repulsion forces.

A. Deformable Modeling

The obstacles in the workspace are 3D objects. The surface

of objects is represented by a fine resolution triangle mesh.

A tetrahedral mesh is used to represent the interior of these

volumetric objects (see Figure 2). The actual deformations

are computed on the coarse resolution tetrahedral mesh.

To compute the deformation of our tetrahedral objects we

use the co-rotational Finite Element formulation [11, 18].

The total potential energy of a single tetrahedral element e

is given by

Π = Ue + WP , (1)

with work potential WP determined by the external forces

and inner energy Ue

Ue =
1

2

∫

e

σT ǫ dV. (2)

Since we assume only linear isotropic materials, we have a

linear relation between the stress σ and the strain ǫ given by

the generalized Hooke’s law.

The key idea of the Finite Element method is to discretize

the object into a finite set of elements (in our case tetrahe-

drons) to compute the deformations based on Equation (1) on

the nodes and to interpolate the deformation in the elements

using the nodal values. To compute the strain ǫ from the

nodal deformations in our model, we use the linear Cauchy

strain tensor which is efficient to compute. The Cauchy

tensor, however, is not rotationally invariant. This leads to

ghost forces which result in distortions for large rotational

deformations. Therefore, we keep track of the rigid body

motion for each element by extracting the rotation from the

transformation matrix using polar decomposition. Applying

the strain tensor in the rotated frame leads to rotational

invariance and has low computational costs compared to

the nonlinear strain tensor. We will discuss the performance

of our Finite Element approach compared to the versatile

mass-spring approach used by Rodrı́guez et al. [20] in the

experimental results section.

B. Collision Detection

For the realistic processing of interactions between the

robot and the deformable objects, an efficient collision detec-

tion algorithm is required. We employ a spatial subdivision

scheme in our simulation system, where the elements are

stored in a hash grid [24]. The key idea of this approach

is to implicitly discretize R
3 by storing the elements and

nodes in the hash grid. As space is usually filled sparsely

and non-uniformly, this method consumes less memory than

an explicit discretization. The hash key is computed from the

coordinates of the corresponding grid cell. As a result, only

the elements with the same hash key need to be checked for

collisions.

To check for collisions, one computes the intersection

between points and tetrahedra. This can be done efficiently

using barycentric coordinates of the points with respect to

the tetrahedra.

Methods commonly employed for rigid bodies such as

bounding box hierarchies [8] are less suited for deformable

objects, where these spatial data structures cannot be pre-

computed [25].

C. Computation of Contact Forces

To handle collisions between the robot and the de-

formable objects, we employ the force-based collision han-

dling scheme proposed by Spillmann et al. [22]. It combines

the advantages of penalty and constraint-based collision han-

dling schemes. For a set of colliding points of a tetrahedral

mesh, we compute a collision free state using a linearized

relation between internal forces and displacements of all

affected points. Contact forces can be computed analytically

to obtain this collision-free state while conserving overall

system energy.

Using this combination of FEM-based simulation and

the collision handling described above, our system can

simulate thousands of tetrahedra at interactive rates. An

example implementation of the simulation system is available

online [12].

D. Object Deformation Costs

The inner energy of an object, specified in Equation (2),

provides a measure of the deformation costs of a tetrahedral

object and thereby of the additional energy consumption of

the robot. In case of an undeformed object, the inner energy

is zero. Otherwise, the inner energy increases depending

on the deformation of the object. For an object O with

tetrahedral elements {ei}, we define the total inner energy

UO induced by a robot r at position p approaching from

direction θ by the sum over the inner energies of all elements

ei of the object UO(r,p, θ) :=
∑

ei∈O

Uei
(r,p, θ).

For any given position p and direction θ we determine

the total deformation cost Cdef (p, θ) :=
∑

O

UO(r,p, θ) by

summing over all objects O in our workspace. The direc-

tion θ has to be taken into account, since deformable objects

might deform differently when approached from different

directions.

The total deformation cost on a path Γ of the robot r

approaching from direction θ in our environment naturally

results in the sum of the deformation costs of all objects

that are deformed by the robot while moving on the path in

discrete time steps ti:

Cdef (Γ, θ) =

tn
∑

t=t1

Cdef (pr(ti), θ(ti)). (3)

Here pr(ti) is the position of the robot on Γ at time ti. θ(t1)
is given by θ, all other directions θ(ti) are determined as the

difference between pr(ti) and pr(ti−1).

IV. PATH PLANNING

WITH DEFORMABLE OBJECTS

In this chapter, we describe our path planning system

and introduce the approximate deformation cost function

that allows for a speedup of the path planning process in

environments with deformable obstacles.

A. Overview of the Path Planning System

The general path planning problem is to find a sequence of

valid robot configurations that lead from the starting to the

goal configuration. Probabilistic roadmap planners achieve

this by constructing a roadmap that represents the environ-

ment of the robot and by applying a graph search algorithm

to find a path from the starting to the goal configuration. The

roadmap is constructed in a preprocessing step by sampling

points in the configuration space of the robot. These points

have to satisfy certain feasibility constraints. In general, valid

configurations are required to be part of the free configura-

tion space Cfree . In our situation, however, we modify this

constraint and require configurations to be in Cfree ∪ Cdef .

Thus, we also accept configurations that lead to collisions

with deformable objects. In our current implementation,

we use Hammersley-sampling [6] to generate configuration

hypotheses in the space. This deterministic sampling method

generates a sequence of points that are distributed with low

discrepancy. After a designated number of samples has been

generated, a local planner connects neighboring samples

for which a valid path exists. This typically results in a

roadmap that covers the environment of the robot and can be

utilized for planning paths on which objects are allowed to

be deformed by the robot. To answer a path query, we then

insert the starting and the goal configuration into the roadmap

and connect them to their neighbors. Finally, we apply A⋆ to

find the best path from the starting to the goal location on the

graph. Here, we search for the path with the best trade-off

between travel costs and deformation cost. Therefore, we

need to be able to estimate the expected deformation cost

arising on the edges of the roadmap.

The simulation system presented in the previous section

can be used inside the planning algorithm to compute the

deformation cost Cdef (i) of an edge i by simulating a robot

moving along this edge deforming the object. The edges

considered during the A⋆ planning are evaluated by trading

deformation against travel cost. In our planning system, we

assume the travel cost to be proportional to the length of the

edge i. This results in the cost function

C(i) := α Cdef (i) + (1 − α) length(i), (4)

where α ∈ [0, 1] is a user-defined weighting coefficient. In

order to obtain an admissible heuristic for A⋆, we use the

Euclidean distance to the goal location weighted with (1−α)

h(n) = (1 − α)‖g − n‖, (5)

where g is the goal location and n the current node in

the roadmap. Thus, we are able to find the path in the

roadmap that optimizes the trade-off between travel cost and

deformation cost for a given user-defined parameter α.

This technique leads to a working planning system that

considers deformations of the objects in the environment

when planning a trajectory for a mobile robot. The draw-

back of this technique, however, is its high computational

requirements. Answering a path query typically takes several

minutes even for small examples. Therefore, we developed

an alternative approach that computes an approximation of

the cost function in advance and thus facilitates online path

planning.

B. Approximative Deformation Cost Function

The goal of the approximative cost function is to quickly

provide an estimate of the deformation costs for all objects

along an edge in the roadmap. Such a function can be used

in the planning approach described above to determine Cdef .

The actual value of the deformation cost function of an object

mainly depends on the trajectory of the robot relative to

-1
-0.5

 0
 0.5

x [m]

 -0.5
 0.0

 0.5
 1.0

y [m]

deformation cost

-1
-0.5

 0
 0.5

x [m]

 -0.5
 0.0

 0.5
 1.0

y [m]

deformation cost

Fig. 3. Deformation costs for moving a robot along straight lines through a
curtain. The lines are specified by starting points (x, y) and travel direction
θ = 0◦ (top) resp. θ = 45◦ (bottom) relative to the center of mass of the
obstacle.

the object. Therefore, we precompute the deformation cost

for a number of line segments through each object. A line

is specified by a starting location (x, y) and the traveling

direction θ as well as the traveled length l on the line

segment. The traveled length is constrained to the maximum

distance that the robot can travel while still deforming the

object.

In a preprocessing step, we carry out the simulations for

a uniform resolution of starting points and directions and

store the deformation costs for a fine length resolution in a

histogram. This leads to the approximate deformation cost

function Ĉdef (x, y, θ, l) → R which returns the deformation

cost for edges of the roadmap.

We compute the deformation cost Ĉdef (x, y, θ, l) of an

arbitrary edge e in the roadmap by first determining the

starting position (x, y), direction θ, and length l relative to

the deformable object. We then apply a kernel smoother [1]

considering all neighboring line segments et in the histogram

Ĉdef (e) =

∑

t
K

(

e−e
t

h

)

Ĉdef (e
t)

∑

t
K

(

e−et

h

) , (6)

where we use the multivariate Gaussian kernel

K(u) =

(

1√
2π

)3

exp

[

−‖u‖2

2

]

. (7)

As distance metric between different line segments, we

employ the Euclidean distance and normalize the orientation

with respect to the positions.

To finally answer path queries, we apply the A⋆ algorithm

on the roadmap. The cost of each edge in the graph is

computed according to Equation (4) using the precomputed

approximation Ĉdef of Cdef . Storing deformation costs in

Fig. 4. Test environments: world 1 with curtains (left), world 2 with rubber ducks (middle), and world 3 with rubber ducks and curtains (right).

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 3

∅
 r

el
at

iv
e

er
ro

r
(%

)

experiment

simulation approach fem
simulation approach ms

approx fem hires
approx fem lores
approx ms hires
approx ms lores

Fig. 5. Comparison of the error in the deformation cost for the simulation-
based approach and our approximation.

a preprocessing step dramatically increases the performance

of our planner as can be seen in the experiments.

Although the precomputation is computationally intense,

depending on the resolution of the approximative deforma-

tion cost function, it has to be done only once for each

distinct object. The following section provides results on the

runtime of the precomputation for different resolutions of the

deformation cost grid. Figure 3 illustrates the deformation

cost Ĉdef of the curtain shown in Figure 1 along a series of

straight lines.

V. EXPERIMENTS

We carried out different experiments to evaluate our path

planning approach. In this section, we first compare the

deformation cost obtained by the FEM-based simulation

technique with our approximative solution that computes a

deformation cost function for each object in a preprocess-

ing step. Next, we investigate how the deformation cost

weighting coefficient α influences the path search. Finally,

we present examples for planned trajectories in environments

with deformable objects. All experiments were carried out on

a standard PC with 2.40 GHz Intel Core Duo Processor and

an Nvidia GeForce 7950 GT graphics card. The Nvidia GPU

is used by the simulation engine.

A. Cost Function and Runtime

In the first experiment, we compare the simulation ap-

proach to estimate the deformation cost with our approxi-

mative cost function. We chose curtains and rubberducks as

deformable objects. The curtains are modeled to be easily

deformable while the rubberducks have high deformation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3

∅
 p

at
h
 p

o
in

t
d
is

ta
n
ce

 (
m

)

experiment

simulation vs. approximation

Fig. 6. Comparison of the simulation-based approach and our approxima-
tion: average deviation of the generated path points for the examples shown
in Figure 7.

costs. Both approaches had to solve 25 path queries in the

three test environments depicted in Figure 4. After planning,

the best trajectory is sent to a path execution module that

guides the robot along that trajectory. In our simulation, the

execution of motion commands is affected by noise.

The experiments are carried out for different resolutions

of the approximate cost function. Furthermore, we compare

our approach to a simulation system using the versatile mass-

spring model. We evaluated the error between predicted

and measured deformation cost. The results are shown in

Figure 5. As expected, the error of the simulation technique

is typically smaller compared to our approximative approach.

This, however, comes at the expense of running time as

illustrated in Table I. While our approach answers path

queries even for complex environments in a few hundred

milliseconds on average, the simulation approach spends

generally about half an hour on one query. Thus, our ap-

proach is about four orders of magnitude faster than the

simulation using FEM. We also compared our approach to

a simulation system using the versatile mass-spring model.

Although this simulation system can be evaluated faster, our

approach still is about 2000 times faster. The runtime for the

precomputation of the approximate cost function for different

resolutions of the cost grid is summarized in Table II.

Additionally, we carried out an experiment in a ran-

domized world, where we compare the computed paths

for the simulation and the approximation approach. The

generated trajectory points deviate on average by 0.09 m

Fig. 7. Example trajectories generated by the simulation approach (top row) vs. our approximation approach (bottom row).

Fig. 8. Different trajectories obtained in two environments depending on the weighting coefficient α.

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

Fig. 9. Deformation and travel costs of executed trajectories depending on the weighting coefficient α. The left plot corresponds to the environment in
the first row of Figure 8 and the right one to the one in the second row.

TABLE I

AVERAGE RUNTIME INCLUDING CONFIDENCE INTERVALS.

World ∅ Query ∅ Query ∅ Query
(FEM) (mass-spring) (our approach)

1 36 m 41 s ± 347 s 12 m 45 s ± 112 s 0.4 s ± 0.04 s
2 30 m 33 s ± 512 s 8 m 10 s ± 73 s 0.2 s ± 0.02 s
3 29 m 43 s ± 130 s 7 m 27 s ± 36 s 0.3 s ± 0.04 s

in an environment of 2.6× 9 m as depicted in Figure 6

and the deformation costs of the trajectories deviate by

9.4 ± 5.2%. In most cases, the actual trajectories reported

by the different planners do not deviate substantially. As

the examples depicted in Figure 7 illustrate, the resulting

trajectories are similar. This suggests that our approximative

solution provides acceptable trajectories for planning in

environments with deformable objects.

B. Determining the Weighting Coefficient

Equation (4) contains the weighting factor α that trades

off the travel costs with deformation costs. To find good

values for this factor, we carried out a series of planning

experiments with varying values for α. Low values for α

TABLE II

RUNTIME FOR THE PRECOMPUTATION OF THE DEFORMATION COST

FUNCTION FOR DIFFERENT RESOLUTIONS OF THE COST GRID.

Object Mass-spring simulation FEM simulation

coarse res. fine res. coarse res. fine res.
(200 lines) (7056 lines) (200 lines) (7056 lines)

curtain 17 m 48 s 10 h 37 m 1 h 11 m 41 h 16 m
rubberduck 18 m 21 s 10 h 56 m 1 h 16 m 44 h 44 m

result in the fact that the robot traverses objects that are hard

to deform in order to obtain a short trajectory. In contrast

to this, high values for α will lead to a planning system

that entirely avoids deformations if possible. Examples for

such trajectories are depicted in Figure 8. The corresponding

analysis of the deformation and travel costs is shown in

Figure 9. Based on these experiments, we generally set

α = 0.2. As a result, the robot selects trajectories through

easily deformable objects such as curtains and tries to avoid

objects that cause high deformation costs such as the rubber

ducks.

Finally, Figure 10 shows a sequence of snapshots taken

during a planning experiment. They illustrate that a robot

Fig. 10. Example trajectory guiding the robot through a deforming object.

using our planning approach selects trajectories through

deformable objects in case the deformation is not too ex-

pensive. More examples and animations are available at our

website [9].

VI. CONCLUSIONS

In this paper, we presented an approach to path planning

in environments with non-rigid objects. Our planner takes

potential deformations of objects into account using a simu-

lation engine that is based on the physically accurate Finite

Element method. To improve the efficiency of the planner,

our approach uses a pre-computed and object-dependent

deformation cost function that estimates the deformation cost

of path segments relative to an obstacle. The cost function is

learned offline and is integrated into a probabilistic roadmap

planner. To calculate paths, our system trades off deformation

and travel costs. As a result, we obtain highly efficient

paths and at the same time avoid computationally expensive

simulations during runtime.

Our approach has been implemented and tested exhaus-

tively in environments with deformable objects. The utiliza-

tion of the approximative cost function leads to a speedup of

about four orders of magnitude compared to a system that

performs the simulations at runtime.

Despite these encouraging results, we envision several

aspects for further improvements. One of our next goals is to

acquire models of real obstacles with our robot and estimate

their elasto-mechanical parameters, for example by using the

method proposed in our previous work [5]. This will allow

for applying our system to real world settings and accurately

considering the properties of real deformable objects.

VII. ACKNOWLEDGMENTS

This work has partly been supported by the German Re-

search Foundation (DFG) under contract number SFB/TR-8.

REFERENCES

[1] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.
[2] E. Anshelevich, S. Owens, F. Lamiraux, and L.E. Kavraki. De-

formable volumes in path planning applications. In Proc. of the IEEE

Int. Conf. on Robotics & Automation, pages 2290–2295, 2000.
[3] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential

field techniques for robot path planning. IEEE Transactions on

Systems, Man and Cybernetics, 22(2):224–241, 1992.
[4] O.B. Bayazit, J.-M. Lien, and N.M. Amato. Probabilistic roadmap

motion planning for deformable objects. In Proc. of the IEEE

Int. Conf. on Robotics & Automation, pages 2126–2133, 2002.

[5] M. Becker and M. Teschner. Robust and efficient estimation of
elasticity parameters using the linear finite element method. In Proc.

of Simulation and Visualization, pages 15–28, 2007.

[6] M.S. Branicky, S.M. LaValle, K. Olson, and L. Yang. Quasi-
randomized path planning. In Proc. of the IEEE Int. Conf. on Robotics

& Automation, pages 1481–1487, 2001.

[7] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.
Kavraki, and S. Thrun. Principles of Robot Motion. MIT Press, 2005.

[8] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2005.

[9] B. Frank. Motion planning with deformable objects, 2008.
http://www.informatik.uni-freiburg.de/˜bfrank/defplan.

[10] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for
deformable robots in complex environments. In Proc. of Robotics:

Science and Systems (RSS), pages 225–232, 2005.

[11] M. Hauth and W. Strasser. Corotational Simulation of Deformable
Solids. In WSCG, pages 137–145, 2004.

[12] B. Heidelberger, M. Teschner, J. Spillmann, M. Mueller,
M. Gissler, and M. Becker. DefColStudio –
interactive deformable modeling framework.
http://cg.informatik.uni-freiburg.de/software.htm.

[13] C. Holleman, L.E. Kavraki, and J. Warren. Planning paths for a
flexible surface patch. In Proc. of the IEEE Int. Conf. on Robotics

& Automation, pages 21–26, 1998.

[14] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning
for elastic objects. In Robotics: The Algorithmic Perspective, pages
313–325. A.K. Peters, 1998. Proc. of the Third Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[15] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[16] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub., 1991.

[17] S.M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[18] M. Mueller and M. Gross. Interactive Virtual Materials. In Graphics

Interface, pages 239–246, 2004.

[19] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson.
Physically Based Deformable Models in Computer Graphics. Com-

puter Graphics Forum, 25(4):809–836, 2006.

[20] S. Rodrı́guez, J.-M. Lien, and N.M. Amato. Planning motion in com-
pletely deformable environments. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 2466–2471, 2006.

[21] T.W. Sederberg and S.R. Parry. Free-form deformation of solid
geometric models. In Proc. of the Conf. on Computer graphics and

interactive techniques, pages 151–160, 1986.

[22] J. Spillmann, M. Becker, and M. Teschner. Non-iterative computation
of contact forces for deformable objects. Journal of WSCG, 15(1–
3):33–40, 2007.

[23] M. Teschner, B. Heidelberger, M. Mueller, and M. Gross. A versatile
and robust model for geometrically complex deformable solids. In
Proc. of Computer Graphics International, pages 312–319, 2004.

[24] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross. Optimized spatial hashing for collision detection of
deformable objects. In Proc. Vision, Modeling, Visualization (VMV),
pages 47–54, 2003.

[25] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.P. Cani, F. Faure, N. Magnenat-Thalmann, and
W. Strasser. Collision Detection for Deformable Objects. Computer

Graphics Forum, 24(1):61–81, 2005.

