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the toothpaste has very different meanings depending on
whether it happens in the storage room or in the bathroom.

In this paper, we investigate how RFID technology can be
enhanced by location information. We use a mobile robot
equipped with RFID antennas to determine the locations of
RFID tags attached to objects in an indoor environment.
Figure 2 (left) depicts the robot built to carry out this re-

----- = search. The robot consists of an off-the-shelf Pioneer 2 robot
equipped with a laser range scanner and two RFID antennas.
Fig. 1. Typical RFID tags used to label objects. The size of the tag depict&pe antennas are mounted on top of the robot and point
in the center isl1 x 5 cm. approximately 45 degrees to the left and to the right with
respect to the robot. To use these antennas for estimating

Abstract—In this paper we analyze whether recent Radio the locations of objects, we first learn a sensor model that
Frequency ldentification (RFID) technology can be used to describes the likelihood of detecting an RFID tag given its
improve the localization of mobile robots and persons in their |ocation relative to one of the antennas. Since the noise of these
Erl‘:"lilgongimwi'% p;rtrir‘:é‘llfi‘l'é Welaffgjr?z mzt pirsf’bée'::i Ofeldocve\l/liitﬁng sensors is highly non-Gaussian, we represent the measurement
pair of R?:ID antennas. We ;?resent a probabilisclicprgeasurement “ke“hOOd_ model by fa p'ece""'s‘? constant apprOX'matlon' Then
model for RFID readers that allow us to accurately localize We describe a technique to estimate the locations of RFID tags
RFID tags in the environment. We also demonstrate how such using a mobile robot equipped with RFID antennas to detect
maps can be used to localize a robot and persons in their tags. This process uses a map previously learned from laser
o oAl Fatretans o vl i) can N Gt We then apply Mante Carto localzaton (4], [T
be reducf)ed strongly tq)y fusing RFID%nformation with laser data. to e_St'mate the pos.e of the robot and even of P?rsons _m this

environment. Experimental results suggest that it is possible to

accurately localize moving objects based on this technology.
I. INTRODUCTION Further experiments demonstrate that RFID tags greatly reduce

the time required for global localization of a mobile robot in

Recent advances in the field of radio frequency identificatiois environment. Additionally, this technology can be used to
techniques have reached a state that will allow us within tiggastically reduce the number of samples required for global
next years to equip virtually every object in an environmeidcalization.
with small, cheap Radio Frequency Identification (RFID) This paper is organized as follows. After discussing related
tags [6]. Such tags contain circuitry that gain power fromyork we will present the sensor model for RFID receivers in
radio waves emitted by readers in their vicinity. They use th&ection 1ll. Then we describe how this model can be used
power to reply their unique identifier to the reader. Figure ih combination with a laser-based FastSLAM [8] approach to
depicts three different RFID tags that were used to carry ogffectively determine the locations of RFID tags. In Section V
the experiments described in this paper. The detection range describe how the resulting beliefs about the locations
of these tags is approximately 6 m. of the tags can be utilized to determine the position of the

RFID tags open up a wide variety of applications. Famwbot and of persons in the environment. Finally, we present
example, an important problem in the health-care sector dgperimental results illustrating the advantages of RFID tags
the recognition of daily activities a home patient is engagédr robot localization and person tracking.
in. The Guide project [13] uses small RFID readers worn by a
person to identify the objects the person touches. The sequence
of touched objects is used by a Bayesian reasoning system tén the last years RFID sensors [6] have started to enter the
estimate the activity of the person and to provide supportfield of mobile robotics. Nowadays RFID readers can detect
needed. Location context can provide important informatidow-cost passive tags in the range of several meters. These
for the interpretation of RFID readings. For example, touchirignprovements in the detection range of passive tags make this

Il. RELATED WORK



Fig. 2. Pioneer 2 with Sick Laser Range Finder, RFID reader and two
antennas (left). Experimental setup used for learning the likelihood function
of tag detections (right).

technology more and more attractive for robotics applications
since the information provided by tags can be used to support
various tasks like navigation, localization, mapping, and evety. 3. Detection field for the left (upper/green histogram) and right
service applications such as people tracking. (lower/red histogram) antenna. The middle/blue histogram shows the area
. where the tag can be seen by both antennas.
Most of the applications of RFID technology, however,
assume that the readers are stationary and only the tags {nat

! . € positionz of the tag and the location, of the antenna.
are attached to objects or persons move. The main focus,l R . AR
. : . ‘We make the simplifying assumption that this likelihood only
to trigger events if a tag is detected by a reader or entenrg]

; gpends on theelative offset between tag and antenna, that
the field of range (for example, to keep track of the contenfs; it only depends on the difference betweerand r,. The

of storage pla_ces [2])'. Recently K"?‘”tor and_Slngh used RF.“ llowing aspects need to be considered when designing an
tags for mapping. Their system relies on active beacons whu% .
. . . ; : ; servation model for RFID tags.
provide distance information based on the time required ?o ) . )
1) There are plenty ofalse-negative readings.e., situa-

receive the response of a tag. Additionally, the positions of . i which th ; q d althouah it is i
the tags have to be known more or less accurately [14], [9].  UOns In which the tag Is not detected although it Is in
the vicinity of the antenna

Tsukiyama [16] also requires given RFID tag positions. Their
v [16] d g gp we obtainfalse-positive readingdn such

system assumes perfect measurements and does not inclu@é Additionally, . '
techniques to deal with the uncertainty of the sensor. a case the antenna detects a tag that is not in range spec-

The problem considered here is closely related to the ified by the manufacturer. This also includes detection

simultaneous localization and mapping (SLAM) problem, in  ©f the RFID tag with the wrong antenna.

which a robot has to generate a map while simultaneougi{ere are several reasons for this. For example, the orientation
estimating its pose relative to this map. However, due to t the tag with respect to the RFID receiver influences the

limited accuracy of the RFID sensors, SLAM-techniques f&nergy absorbed by its own antenna. Depending on this angle,
range-only [14], [9], bearing-only [3] or range and bearing [5},he energy will vary and sometimes not be high enough to

[11], [15] cannot be applied directly to the data provided bgowerthe chip inside the tag. In such a case the tag will simply

the RFID system. Our algorithm instead uses a variant of Faft respond. Furthermore, the shape and size of the detection
SLAM [12] to learn the geometric structure of the environmerignge largely depends on the environment. For example, metal
using laser data [8] and then estimates the positions of the t&gically absorbs the energy sent by the RFID reader and

based on the trajectory computed by the FastSLAM algorithiherefore tags attached to metallic objects will be detected
only in a short range. But even other, non-metallic objects

IIl. L EARNING A PROBABILISTIC SENSORMODEL FOR  greatly influence the detectability of tags. For example, if a tag
THE RFID ANTENNA is attached to a concrete wall its detection statistics typically
To localize an RFID tag in a global reference frame, wehanges drastically. Furthermore, the radio frequency waves
estimate the posterigr(z | z1.¢,71.¢), wherex is the position emitted by the antenna can be reflected by objects such that
of the tag,z;; are the observations at time steps..,¢, the antenna even detects objects outside the specified detection
and 1., are the possibly different locations of the RFIDrange. Note that the observation model for the RFID antennas
antenna. According to Bayes rule and under the assumptiorshbuld be able to cover this wide range of situations and
independence of consecutive measurements given we knowgheuld not make the robot overly confident in the location of
location z of a tag we obtain the following recursive updatea particular tag or even in its own location during localization.
rule: To determine the observation model for the RFID antennas
we generated a statistics by counting frequencies. We pro-
ceeded in the following way. We attached an RFID tag to a
According to this equation, the key term is the quantify; | box and rotated the robot in front of the box. We repeated this
x, r¢) which specifies the likelihood of the observatigrgiven for different distances and counted for every point in a discrete

p(ﬂ? \ Z1:t,7‘1:t) X P(Zt | JT,Tt) p(z | Zl:t—lﬂ“l:t—l) (1)
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rid the fr n f ions of the antenna given th
9 d the equency o . .deteCtO s of the a te. agwve t. et ig. 5. Map of the Intel Research Lab Seattle generated by our FastSLAM
was placed at a position covered by this grid cell relative {gtine.

the robot.

The resulting histogram is shown in Figure 3. This figurgn antenna results in a suboptimal placement of the sampled

contains the detection statistics for both sensors. The hjpsitions. It is initialized at the first detection of the RFID tag
tograms were built from 12,822 measurements. As can be sggnthe robot.

from the figure, both antennas show quite different behaviorsTo each of the randomly chosen potential positions we

although they were measuring the same RFID tag. assign a numerical value storing the posterior probabiliy |

The resulting sensor model used to conservatively approxi:, r,.,) that this position corresponds to the true position of
mate the histograms depicted in Figure 3 is shown in Figurethe tag. Whenever the robot detects a tag, the posterior is
This model consists of three components. The major detectigidated according to Equation (1) and using the sensor model
range for each antenna consists of an arc with an opening ang#ecribed in the previous section.
of 95 degrees in the direction of the antenna. Additionally, an
antenna always detects RFID tags that are close to it even if
they are behind the antenna. This is modeled by a circularGiven the posterior distributiop(z | z1.¢,r1.c) Over poten-
region around the center of the receiver. The corresponditigl positions of an RFID tag we are now ready to compute
likelihood for the two detection ranges are also depicted the likelihood of an observatiop during localization, given
Figure 4. For locations outside these areas we assumdéhe robot or a person is placed at a locatio\ccording to
constant likelihood of 0.5. the law of total probability we obtain

V. LOCALIZATION WITH RFID TAGS

IV. MAPPING RFID TAGS py|D) = Y plzD)p@| 2. ()

The first application of the sensor model described in the
previous section is estimating the location of RFID tags it this equation the term(y | z, ) corresponds to the relative
the environment using a mobile robot. To learn the positio§§NSOr model described in Section Ill. The relative offset of the
of the tags our system proceeds in two steps. First it lear$RNSor is computed from the global coordinates of the detected
the geometric structure of the environment using a laser rarELE'D tag,z, and the robot positiori, Thus, to determine the
sensor. Afterwards we estimate the positions of the tags badkglihood of a tag detection given the robot is at locatipn
on the path of the robot. we have to integrate over the posterior probability of the tag’s

Since our robot is equipped with a laser range scanner, {ggation given the data obtained during the mapping process.
apply the FastSLAM algorithm [8] to learn the geometrical 10 estimate the posé of the robot or of persons in the
structure of the environment. The resulting map used for tggvironment, we apply the well-known recursive Bayesian
experimental results is depicted in Figure 5. Given this md{§ering scheme:
and the maximum I?kelihood path of the_ robot computed by o | Yroes wore—1) = o plye | 1)
the FastSLAM algorithm we can now estimate the locations of
the RFID tags. Here we apply the recursive Bayesian filtering /
scheme given in Equation 1, with.; representing the path of
the robot. Here « is a normalization constant ensuring thatl, |

To represent the belief about the location of an RFID tag.;, uo.:—1) sums up to one over all;. The termp(l; |
we use a set of 1000 randomly chosen positions uniformiy_q,1; ;) describes the probability that the object is at
distributed in a 25 square meter wide area around the curreosition /; given it executed the movement_; at position
pose of the robot. This area is independent of the antenna tHat. This quantity is computed depending on the object
detected the tag in order to avoid that a detection failure we are tracking. In the case of the robot we compute this

e we—1,0iy) - p(li_y | yr:e—1,u0:0—2) d 1;_y (3)
l

’
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Fig. 6. Evolution of the posterior about the localization of an RFID tag over time. The width of the circles represents the importance weight of the
corresponding particle. It is drawn proportional to the ratio between the importance weights of the particular sample and the maximum likelihood sample.

guantity based on the odometry measurements [7]. If we
are tracking persons, we simply represent this density by a
Gaussian centered arouhd Furthermore, the quantity(y; |
l;) denotes the likelihood of the observatign according to
our observation model, which is computed using Equation (2).
To represent the posterior about the pose of the object being
tracked we apply Monte-Carlo localization [4], [7]. In Monte-
Carlo localization, the belief of the robot is represented by a set
of random samples [1]. Each sample consists of a state vector
of the underlying system, which is the posef the robot in
our case, and a weighing facter The latter is used to store
the importance of the corresponding particle. The posterior
is represented by the distribution of the samples and their
importance factors. The patrticle filter algorithm used by our
system is also known asequential importance sampling withwere able to communicate with the robot. Most of them were
resampling[1]. It updates the belief about the pose of the robd@stalled along the circular corridor of the environment.
according to the following two alternating steps: )
1) In the prediction step, we draw for each sample '%1' Mapping RFID tags
new sample according to the weight of the sample andAs already mentioned above, we use the trajectory estimated
according to the moded(l; | us_1,1,_,) of the robot's by our FastSLAM routine to determine the posterior about

dynamics given the movement_; executed since the the locations of the tags. When a tag is detected for the first
previous update. In the case of localizing a person, tHighe, we initialize a discrete set of randomly chosen points
model is simply a Gaussian centeredat; . around the robot and use a uniform distribution to initialize
2) In the correction step, the new observatignis inte- the belief. Whenever a tag is detected, the posterior probability
grated into the sample set. This is done by bootstrgh each sample in that set is multiplied with the likelihood of

resampling, where each sample is weighted accordititf observation given the tag is at the position corresponding
to the observation likelihoog(y; | I;). to that sample. Afterwards we normalize the belief over all

To globally localize the object, we initialize the particle set@mPples. _ .

with a uniform distribution. In the case of RFID sensors, we Figure 6 shows a typical example for the evolution of

fortunately can efficiently sample potential locations of th#e belief of an RFID tag. The leftmost image shows the
object. We simply place samples only in the potential detectiditial sample set after the first detection of an RFID tag.

range of the RFID sensor. Such an approach has been apph@§ remaining images illustrate how the belief focuses on the

successfully in the past, for example by Lenser et al. [10]. {fueé position of the tag as more measurements are obtained.
They show the corresponding beliefs after 6, 17, 65, and

VI. EXPERIMENTAL RESULTS 200 measurements. Note that the diameter of each circle
Our approach described above has been implemented aggresenting a particle corresponds to its importance weight.
tested using a Pioneer 2 robot equipped with a SICK LM&s can be seen from the figure, the belief quickly converges
laser range-finder and an Alien Technology’'s 915 MHz RFIB a unimodal distribution. Note that this is not necessarily
reader with two circularly polarized antennas (see left imaglee case. In principal, our representation can also handle
of Figure 2). The experiments described here were carriathbiguities in which the location of an RFID tag cannot be
out in the Intel Research Lab, Seattle, WA. Figure 5 showetermined uniquely, for example, because the robot cannot
a two-dimensional occupancy grid map generated with otgach locations which are required to resolve the ambiguity.
FastSLAM routine. The size of the environment is 28m by Figure 8 depicts the positions of the robot when it detected
28m. We installed 100 tags in this environment (see Figure e tag, for which the beliefs are plotted in Figure 6. Detections
The tags were of the types depicted in Figure 1 and all of thewfithe right antenna are displayed by filled circles and for each

Fig. 7. RFID tags attached to walls.
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Fig. 8. Places where the robot has detected the RFID tag with the left .
(unfilled circle) or right antenna (filled circle) Time step

Fig. 10. Positioning error of the laser based global localization (in m) without
(red or dark grey) and with (green or light grey) RFID data.
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\‘5/ 12 I that this is only a rough approximation of the motions of a
E 10 person. Better models therefore can be expected to result in
g 8 | more accurate estimates.

= 6 I Figure 9 shows the localization error during a global lo-
% 4 I calization run using RFID tags only. The two plots show
S 2 | the localization error for global localization without odometry
— 0 (red/dark grey) and with odometry (green/light grey).

0 5 10 15 20 25 30 35 40 The center image of Figure 11 shows the trajectory for

the object being tracked when no odometry information is

used. The corresponding ground-truth obtained by laser-based

Fig. 9. Error (in m) during global localization with (green or light grey) andocalization is depicted in the right image of the same figure.

without (red or dark grey) odometry using RFID tags only. As can be seen, even with such noisy sensors the estimated
trajectory is quite close to the ground truth.

detection of the left antenna we draw an unfilled circle. As

can be seen from the figure, the measurement noise is qéitelmproving Global Localization with RFID Tags

high and there are several false detections. Nevertheless, OUfhg final experiment is designed to illustrate that the RFID
algorithm is able to accurately localize the tag at the wall C'°§8chnology can be used to drastically improve the global lo-
to the entrance. _ calization performance even in the case where highly accurate

After traveling 791.93m with an average speed of 0.225mégsors such as laser range finders are used. To analyze this we
the robot had processed 50,933 detections of RFID tagged a pre-recorded data set to figure out how efficiently the
The resulting map of the tags (at their maximum likelihooghpot can determine its global position in this map. Since the
position) is shown in Figure 11 (left). Thus, our sensor mod@lF|p tags are only placed close to the corridor we generated
alloyvs to learn the positions multiple tags in a standard offig%mmes only in the corridor of the environment. We compared
environment. the time required for global localization using laser data
with the time needed when laser and RFID tags were used
simultaneously. Figure 10 shows the average localization error

The next set of experiments is designed to illustrate thiatr a typical run for both cases. As the figure illustrates, global
the RFID map generated in the previous step can be udedalization can be achieved much faster when laser and RFID
to localize the robot and even persons equipped with RFliata are combined (green/light grey) compared to a situation
antennas. in which only laser data is used (red/dark grey).

In the first experiment we steered the robot through the Additionally, the use of RFID sensors can greatly reduce the
environment and applied Monte-Carlo localization to globallgjumber of samples required for global localization. Figure 12
estimate the position of the vehicle. To simulate the situati@mows the localization error depending on the number of
in which we localize a person instead of the robot we simpperticles for the case in which only laser data is used as well as
ignored the odometry information and changed the motidar the situation in which the laser data is combined with RFID
model in the Monte Carlo localization procedure. As alreadgformation. It turns out that laser-based global localization is
mentioned above we used a standard motion model [7] efficient when at least 10.000 particles are used. On the other
estimate the pose of the robot. In order to localize and kebpnd, if we fuse the laser data with the information about the
track of a person we simply replaced this motion model by RFID tags, we can globally localize the object with as few as
Gaussian distribution centered around the current pose. N6@samples.

Time step

B. Localization with RFID Tags
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Fig. 11. Map of Intel Lab with most likely positions of the RFID tags (left), estimated trajectory (without odometry) (center) and the corresponding ground
truth (right).

| —
ib 1%

REFERENCES

g » 10000 samples E . 1990 samples ——— [1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
g 2 5000 samgles 5 20 100 samples -~ on particle filters for on-line non-linear/non-gaussian bayesian tracking.
SIS s s s 30 samples - IEEE Transactions on Signal Processjrig(2):174-188, 2002.
2 0r* R ';'-'"'x" £ 10 [2] J. Brusey, M. Harrison, Ch. Floerkemeier, and M. Fletcher. Reasoning
g . g \/\ about uncertainty in location identification with RFID. I4CAI-2003
3 o 3 o Pt e Workshop on Reasoning with Uncertainty in RobotR303.

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 [3] M. Deans and M. Herbert. Experimental comparison of techniques

Time step Time step for localization and mapping using bearing-only sensor. Skventh

Int. Symp. on Experimental Robotic000.
Fig. 12. Localization error (in m) during global localization for different [4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization
numbers of particles and depending on whether only laser data is used (left for mobile robots. InProceedings of the IEEE International Conference

image) or whether the combination of laser data and RFID measurements js ©On Robotics and Automation (ICRA)999. ) ]
used (right image). [5] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally

efficient solution to the simultaneous localisation and map building
(SLAM) problem. InICRA’2000 Workshop on Mobile Robot Navigation
and Mapping 2000.
VIl. CONCLUSIONS [6] Klaus Finkenzeller.RFID Handboook: Radio-Frequency Identification
Fundamentals and Application®Viley, New York, 2000.
In this paper we presented an approach to generate maps[ﬂf D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization:

. . Efficient position estimation for mobile robots. Rroc. of the National
RFID tags with mobile robots. We presented a sensor model conference on Artificial Intelligence (AAA, 11999.

that allows us to compute the likelihood of tag detection$s] D. Hahnel, W. Burgard, D. Fox, and S. Thrun. An efficient fastslam

given the relative position of the tag with respect to the robot. algorithm for generating maps of large-scale cyclic environments from
.. . . raw laser range measurements.Aroc. of the IEEE/RSJ International
Additionally we described how to compute a posterior about conference on Intelligent Robots and Systems (IR2®)3.

the position of a tag after the trajectory and the map has bed$j George A Kantor and Sanjiv Singh. Preliminary results in range-only

; ; ; localization and mapping. IfProceedings of the IEEE Conference on
generated with a highly accurate FastSLAM algorithm for Robotics and Automation (ICRAJ002.

laser range scans. We furthermore present how the postefigf s. Lenser and M. Veloso. Sensor resetting localization for poorly

can be used to localize a robot and persons in the environment. modelled mobile robots. IRroc. of the IEEE International Conference
. . on Robotics & Automation (ICRAR000.
The system has been implemented on a Pioneer 2 rpﬂq J.J. Leonard and H.J.S. Feder. A computationally efficient method for
that was augmented by two RFID antennas. In practical large-scale concurrent mapping and localizationPtac. of the Ninth

experiments we demonstrated that the system can build ac- Int. Symp. on Robotics Research (ISRE999.

. ] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:
Curate maps of RFID tags. We furthermore illustrated thglz A factored solution to the simultaneous localization and mapping

the resulting maps can be used for accurate localization of problem. InProceedings of the AAAI National Conference on Artificial
the robot and moving objects without odometry information,  Intelligence Edmonton, Canada, 2002. AAAI.

. . . M. Philipose, K. Fishkin, D. Fox, H. Kautz, D. Patterson, and
Finally we presented an experiment demonstrating that tHg] M. Perkowitz. Guide: Towards understanding daily life via auto-

combination of a laser-range scanner and RFID technology identification and statistical analysis. Rroc. of the Int. Workshop
can greatly reduce the computational demands for the global on Ubiquitous Computing for Pervasive Healthcare Applications (Ubi-

P . . health) 2003.
localization of a moving mobile robot. [14] Sanjiv Singh, George Kantor, and Dennis Strelow. Recent results in

extensions to simultaneous localization and mappinglntarnational
Symposium on Experimental Roboti202.
ACKNOWLEDGMENTS [15] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concur-
rent mapping and localization for mobile robokdachine Learning and
This work has partly been supported by the German Science Autonomous Robots (joint issuj998.

. 16] T. Tsukiyama. Navigation system for mobile robots using RFID tags.
Foundation (DFG) under contract number SFB/TR8-03 and by In Proceedings of the International Conference on Advanced Robotics

the EC under contract number IST-2000-29456. (ICAR), 2003.



