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Abstract

Mobile service robots are designed to operate in dynamic and populated environments. To plan their missions and to
perform them successfully, mobile robots need to keep track of relevant changes in the environment. For example, office
delivery or cleaning robots must be able to estimate the state of doors or the position of waste-baskets in order to deal with the
dynamics of the environment. In this paper we present a probabilistic technique for estimating the state of dynamic objects in
the environment of a mobile robot. Our method matches real sensor measurements against expected measurements obtained
by a sensor simulation to efficiently and accurately identify the most likely state of each object even if the robot is in motion.
The probabilistic approach allows us to incorporate the robot’s uncertainty in its position into the state estimation process.
The method has been implemented and tested on a real robot. We present different examples illustrating the efficiency and
robustness of our approach. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mobile service robots are designed to perform com-
plex tasks in populated environments. In this context,
the position and orientation of certain objects in the
environment generally has a serious influence on the
overall performance of the system. For example, doors
can be closed and tables, chairs or waste-baskets can
block the path of the robot and thus prevent it from
executing a given plan. To robustly perform their
tasks mobile robots therefore must be able to keep
track of the state of objects which are relevant for the
successful execution of their missions.

In this article we propose a technique allowing a
mobile robot to continuously estimate the state of
dynamic objects based on the data obtained with its
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sensors. Using this approach enables a robot to update
and maintain its knowledge about the state of the en-
vironment while it is executing its task. Based on this
information it can immediately react to changes of the
environment and e.g. improve its plans dynamically.
To robustly deal with the different types of uncer-
tainty and noise we apply a probabilistic approach
and maintain probability densities over the possible
states of the dynamic objects. Additionally, we use a
variant of Markov localization to deal with the robot’s
uncertainty in its position while it moves through the
environment. Our approach uses sample-based repre-
sentations of the different densities and includes tech-
niques allowing their efficient integration. In this paper
we also present an application of the method in which
a mobile robot maintains an object-based geometric
world model over time using its laser-range sensor.
The Bayesian integration step of the object state
estimator is based on comparing the measurements

0921-8890/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(00)00115-9



108 D. Schulz, W. Burgard / Robotics and Autonomous Systems 34 (2001) 107–115

obtained with the robot’s sensors with the expected
sensor measurements given a 3D-boundary representa-
tion of the environment and the robot’s current belief.

The problem of tracking or locating objects from
a moving robot has recently been investigated at
different sites. For example, Baerveldt [1] describes
a method to identify and localize objects in single
images. Additionally, Margaritis and Thrun [15] and
Sahin and Gaudiano [22] present methods to localize
one or several objects from sequences of camera im-
ages. Both approaches use models of the robots kine-
matic to deal with the noise in the robot’s odometry. In
[17] the condensation algorithm is used to keep track
of multiple objects with a moving robot. As well as
in [15] this method explicitly models the uncertainty
in the position of the objects. All these approaches do
not explicitly take into account the robots uncertainty
in its position when tracking the object. They only in-
crease the uncertainty of the estimate according to the
movements carried out by the robots. Our approach
also considers the robot’s belief about its position
when estimating the state of objects. This way it can
more accurately deal with the movements carried out
by the robot between consecutive measurements.

The problem to acquire and maintain a model of the
environment has been a major research area in mobile
robotics. The most frequently used types of models are
metric and topological maps. Topological models, as
used in [14,20], describe the environment at a coarse
resolution and in a graph-like structure. Because such
models lack important details such as doors and tables,
they are only of limited use for estimating the state
of dynamic objects. Metric maps, on the other hand,
describe the environment at a finer level of detail. A
popular approach is discrete occupancy grids proposed
in [7,18]. Each cell of such a grid contains the proba-
bility that the corresponding space in the environment
is occupied. The major advantage of occupancy maps
lies in the existence of techniques for their acquisition
and maintenance based on sensor information. How-
ever, most of the occupancy grid techniques are in-
tended for static environments only. Since all cells are
considered independently, they cannot appropriately
represent dynamic objects. In this paper we use an
object-based model of the environment containing all
relevant objects of the environment. We apply a prob-
abilistic approach to estimate the state of dynamic ob-
jects. Changes of these states are also updated in the

object-based model so that the robot’s planning com-
ponents can quickly adapt the robot’s course of action
to the new situation.

The remainder of this paper is organized as fol-
lows. After introducing the state estimation technique
in the next section, Section 3 describes the application
of this technique using laser-range measurements. In
Section 5 we present several experiments carried out
with our mobile robot Rhino in our office environment.
They demonstrate the efficiency and robustness of the
overall approach.

2. Bayesian state estimation

2.1. Object state estimation

In our approach we assume that the changes in the
environment come from certain objects whose state
is changed by the people living in the environment.
Typical examples are doors which are opened or closed
or chairs and tables, the configuration of which is fre-
quently changed because they are used by the inmates.

A robot moving through such an environment in
principle has to simultaneously maintain the joint dis-
tribution over all states of the dynamic objects within
the environment and its own location. Unfortunately,
this approach is not tractable since the size of the joint
state space grows exponentially with the number of
objects. Therefore, we consider a marginal distribution
and independently estimate the states of the dynamic
objects and of the robot.

Within the Bayesian framework a probability
density of an object’s states ∈ S is maintained con-
ditioned on the observationso (sensor measurements)
obtained. The well-known Bayesian update formula
is applied to determine the new posteriorp(s|o)

whenever a new observation is obtained:

p(s|o) = p(o|s) · p(s)

p(o)
. (1)

The termp(s) is the prior density of the object’s state.
It is generally derived from the initial belief of the
object’s state and the previous measurements by the
recursive application of Eq. (1).

In our special case of determining the state of
objects like the opening angle of doors using the
sensors of the robot, we have to take the robot’s un-
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certainty about its current position into account. This
is achieved by integrating over all possible locations
l of the robot during the Bayesian update step:

p(s|o) =
∫

L

p(o|s, l) · p(s|l) · p(l)

p(o|l) dl. (2)

Under the strong assumption that the states of the
object is independent from the locationl of the robot,
we obtain

p(s|o) =
∫

L

p(o|s, l) · p(s) · p(l)

p(o|l) dl. (3)

The denominatorp(o|l) can be rewritten as

p(o|l) =
∫

S

p(o|s, l) · p(s) ds. (4)

The state of a dynamic object changes over time.
Therefore, the beliefp(s) of the object’s state has to be
updated according to a model of the object’s dynamics
p(s|t, s′) prior to a state estimate, wheret is the time
elapsed since the previous estimate.

p(s) =
∫

s

p(s|t, s′) · p(s′) ds′. (5)

2.2. Robot position estimation using Markov
localization

To estimate the positionl ∈ L of the robot in its
environment, we also apply a Bayesian filtering tech-
nique also denoted asMarkov localization[9] which
has successfully been applied in a variety of success-
ful robot systems [2,27]. The key idea of Markov
localization is to maintain the probability density of
the robot’s own locationp(l). Markov localization
also uses the recursive Bayesian update formula to
update thep(l) about the robot’s position whenever a
new sensor measurement is received:

p(l|o) = α · p(o|l) · p(l). (6)

Hereα is a normalize ensuring that thep(l|o) sum up
to 1 over alll. The termp(o|l) denotes the probability
of making observationo given that the robot’s current
location is l. It highly depends on the information
the robot possesses about the environment and the
sensors used. Different kinds of realizations can be
found in [2,12,13,19].

Additionally, Markov localization uses a well-known
formula coming from the domain of Markov chains
to update the beliefp(l) whenever the robot performs
a movement actiona:

p(l|a) =
∫

p(l|a, l′) · p(l′) dl′. (7)

In this equation the termp(l|a, l′) describes the prob-
ability that the robot is at positionl given that it exe-
cuted the movementa at positionl′.

This completes the derivation of the necessary equa-
tions for our object state estimation procedure. The
whole process to estimate the states of dynamic ob-
jects from a moving robot is summarized in Table 1.
Please note that, since we consider the position state of
the robot independent from the states of the individual
objects, we have to use different sensor readings for
the robot localization and for object state estimation.

2.3. Sample-based realization

In the previous section we left open how to repre-
sent the beliefsp(l) and p(s) of the robot’s position
and the state of the object. Over the past years, differ-
ent techniques have been used to represent the beliefs.
Among them are piecewise constant approximations
as applied in [3,4,12,15,19,25]. A very popular ap-
proach is to use Gaussians [10,16,24,26] to represent
the densities. In this paper we use particle-filters to
approximate the involved densities. The key idea of
particle filters is to use a sample-based representation
for the densities. The updates are carried out using
resampling techniques (see e.g. [6,11,21]).

To estimate the position of the robot we apply a
variant of Markov localization denoted as Monte Carlo
localization [5,8]. In robot localization, the two steps
presented in the previous section are realized by the
following two procedures:

1. Prediction. In the prediction step, each sample is
updated according to the modelp(l|a, l′) of the
robot’s dynamics and the actiona executed since
the previous update.

2. Correction. In the correction step, the new obser-
vation o is integrated into the sample set. This is
done by bootstrap resampling, where each sample
is weighted according to the likelihoodp(o|l) of
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Table 1
Simultaneous object state estimation and localization for a moving robot

for each object i do
generatethe samples representing the priorp(si )

end for

k← 0
forever do

if the robot receives new sensory inputok do
if even (k) /∗ integrateok into p(l) ∗/

for each location l do
p(l|ok)← αp(ok |l)p(l)

else
for each object i do /∗ integrateok into p(si ) ∗/

p(si )←
∫
S
p(si |t, s′i ) · p(s′i ) ds′i

p(si |ok)←
∫
L
((p(ok |si , l) · p(si ) · p(l))/p(ok |l)) dl

end for
end if

k← k + 1
else if the robot receives a new odometry readinga do

for each location l do /∗ integratea into p(l) ∗/
p(l)← ∫

L
p(l|a, l′)p(l′) dl′

end for
end if

end forever

making observationo given samplel is the current
state of the system.

Almost the same method is applied during the state
estimates of dynamic object’s; using a sample-based
representation of the densities, Eqs. (3) and (4) sim-
plify to

p(s|o) =
∑
l∈L

p(o|s, l) · p(s)

p(o|l) , (8)

p(o|l) =
∑
s∈S

p(o|s, l). (9)

Here,L andS denote the sample sets representing the
prior densitiesp(l) andp(s).

According to these equations all we need to know
are the quantitiesp(s) which is the prior distribu-
tion of the states of the currently considered object,
the current beliefp(l) of the position of the robot
as well as the termp(o|s, l). This term is the cru-
cial part of the state estimation process, since it de-
scribes the likelihood of making a certain observation
o given the states of an object and the locationl of
the robot. This quantity is generally derived using a
matching procedure which determines the likelihood

of the current measurement given the measurement
that is expected for a given position of the robot and
the state of the object. A special implementation of this
scheme using laser-range data is described in the next
section.

3. Laser-based implementation

Our current implementation uses the data obtained
from laser-range finders to estimate the state of dy-
namic objects such as doors, chairs and tables. Each
scan of such a laser-range device measures the dis-
tances to objects along beams at a fine angular reso-
lution (see, for example, the left image of Fig. 1). The
result is a sequence ofn distance measurementsdi ,
wheren is the number of beams anddi is the length
of beam i. To determine the likelihoodp(o|s, l) of
a beam we use a geometric world model consisting
of a 2D/3D-boundary representation of our environ-
ment (see right image of Fig. 2). Given the geometric
primitives in this map we use a sensor simulation
based on ray-tracing to compute for each beami the
expected distancêdi(s, l), given the robot is at loca-
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Fig. 1. Left image: Rhino detecting the state of two doors with its laser range-finder. The estimated states of the doors are depicted in
black. Right image: 3D visualization of the situation depicted in the left image.

tion l and the state of the object iss. Obviously, the
likelihood p(o|s, l) highly depends on the accuracy
of the sensors and the map. In our current system we
assume that the measurement error is Gaussian, i.e.di

is normally distributed around the expected distance
d̂i (s, l).

Supposep(di |d̂i (s, l)) is the probability of measur-
ing a distancedi with the ith beam, given the distance
to the closest object in the map iŝdi(s, l). Under the
assumption that the individual beams are independent,
given the position of the robot and the map, we can
computep(o|s, l) as

p(o|s, l) =
∏

i=1,... ,n

p(di |d̂i (s, l)). (10)

Fig. 2. Left image: the RWI B21 robot Rhino. Right image: a VRML visualization of the 3D model of our office environment used for
the experiments.

To speed up ray-tracing, we maintain a spatial in-
dex structure on the world model, which is based on
spatial tiling [23] of the scene. In addition, in most
cases it is not necessary to consider all beams of one
scan for a state estimate. Beams, which do not hit the
object in any of the states contained in the sample set,
only provide a constant factor in the probability cal-
culation (see Eq. (10)). Based on the sample set of the
prior distributionp(s), the sequence of beams being
used can therefore be reduced to the beams hitting the
objects in at least one of the states contained in the
sample set. We approximate this reduced sequence by
computing the set of consecutive beams which inter-
sect the bounding box of the object in at least one of
the sample states.
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4. Experimental results

In order to evaluate the performance of the state
estimation technique, we carried out several exper-
iments with our mobile robot Rhino in our office
environment. Rhino is an RWI B21 robot (see Fig. 2)
equipped with two SICK PLS 200 laser-range finders.
These sensors measure the distance to obstacles in the
surrounding of the robot with an angular resolution
of 1◦, thus providing 360 distance measurements in
each scan. The estimation tasks carried out by the
robot during the experiments were:

1. to determine the state of doors while it is moving
fast,

2. to determine the position and orientation of a single
object while passing by, and

3. to correct the position of furniture within the envi-
ronment.

All experiments have been evaluated off-line based
on logs recorded during the robot’s operation. These

Fig. 3. Trajectory of the robot and state of the doors in the corridor of the Department of Computer Science, Bonn.

Fig. 4. Visualization of the corridor at the beginning (left image) and at the end of the trajectory (right image).

logs contain the sequence of laser measurements, as
well as the robot’s belief of its own position. This
belief is given as a set of position samples, which is
provided by the robot’s Markov localization compo-
nent. The evaluation of the state estimation algorithm
was carried out on a SUN Ultra-Sparc 5 workstation.

4.1. Estimating the state of doors

In order to demonstrate that our state estimation
technique is capable to provide robust and accurate
estimates even when the robot is moving fast, we esti-
mated the state of the doors in our department building
(see Fig. 2 for the complete model of the department),
while the robot was moving along the corridor. Fig. 3
shows a bird’s eye view of the corridor, the state of the
doors during the experiments, and the trajectory taken
by Rhino (see also Fig. 4). At the straight parts of the
trajectory the robot moved at a speed of 70 cm/s. A
door’s state is estimated by the robot, as soon as it gets
closer than 3.5 m. We approximate the opening angle
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Fig. 5. Estimated states of the doors depicted in Fig. 3; given are the means (average state) of a number of estimates (measurements) for
each door, as well as the standard deviations; the state denotes the orientation of the door within the world model in degree.

in steps of 10◦ ranging from 0◦ for a completely closed
door, to 90◦ for a completely opened door. Using this
coarse approximation, one state estimate takes about
250 ms. Note that in some locations on the corridor,
the robot has to measure up to 4 doors.

Fig. 5 lists the averages of independent estimates for
each door where the states are described as the orien-
tation of the door within the world model. On average
over all doors, the estimate is only half a state apart
from the exact value. The algorithm is thus capable to
collect object state information even when the robot
moves at high speed.

4.2. Estimating the state of a movable object

The second experiment is to estimate the position
and orientation of objects which might have been
moved since the last time the robot observed them.
Fig. 6 shows the trajectory of Rhino while it is inspect-
ing the state of an U-shaped object on the corridor. In
this experiment, the object was manually rotated by
about 30◦ after the robot had passed it two times. This

Fig. 6. RHINO estimates the position and orientation of an U-shaped object placed on the corridor; the object is 37 cm by 37 cm in size.

way, three different states of the object have been
presented to the robot. In contrast to estimating the
state of doors, this estimation task has three degrees
of freedom. In this situation, the efficiency of the
state estimation process strongly depends on the prior
information of the object’s state. In the experiment,
we assume that the position of the object is roughly
known from the previous estimate. The estimator used
a sample set of 40 states. The algorithm was able
to initially find the object and to track it using this
setting. Fig. 7 lists the average estimate for each pose
and the standard deviations thereof. In our prototypic
implementation, an estimate took between 1 and 3 s,
depending on how many laser beams hit the object.

4.3. Maintaining the world model

In the final experiment, we tested the algorithm on
the object-based model of our office environment. The
task is to estimate the position of 4 desks located in
two offices. For the experiment we modified the model
by shifting the desks 20 cm towards the center of the
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Fig. 7. State estimates of an U-shaped obstacle on the corridor (see Fig. 6).

Fig. 8. RHINO estimating the position of desks in two offices; the robot started in the doorway of the left office.

rooms. The situation is illustrated in Fig. 8. The initial
state of the model is drawn in grey. Our algorithm
managed to correctly identify the positions of Desk-1,
Desk-2 and Desk-4, as can be seen from the estimated
states outlined in black. However, it was not able to
determine the state of Desk-3 correctly. Desk-3 was
partially occluded by a small square table standing in
front of it and additionally by a chair, which was not
contained in the model. The algorithm also failed to
correctly determine the position of the square table, as
it is nearly invisible to the laser-range finders.

5. Conclusions

In this work, we proposed the probabilistic state es-
timation of dynamic objects. The algorithm achieves
a high degree of robustness by taking the robot’s un-
certainty about its position into account. Therefore, a
Markov localization component is integrated into the
state estimation process. The state estimator compares
real sensor measurements against expected measure-
ments given a state of the object, where the expected
measurements are obtained using a sensor simulation
within an object-based model of the environment. The
use of Monte Carlo sampling techniques throughout
the algorithm ensures that the robot is capable to
determine the state of objects very fast. As our ex-
periments show, the approach allows for efficient and

robust state estimates even when the robot is moving
at speeds of upto 70 cm/s.

Even though these results are promising, there
are still warrants for future work. Methods to detect
poor estimates caused for example by unexpected
occlusions can further increase the robustness of the
algorithm. In certain situations, especially if the ob-
jects are almost symmetric, a state estimate based on
one measurement may not be sufficient to determine
the most likely state of the object uniquely. To solve
this problem, the approach needs to be extended to
use sequences of measurements taken from different
positions. That way, the accuracy of state estimates
might also be increased. In order to actively maintain
a world model, a planning component needs to be
developed, which decides on the optimal position of
the robot for a state estimate, e.g. the position which
provides the sensor information that is expected to
achieve the state estimate with the minimal variance
of the posterior object state density.
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