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Abstract— Hard real-time systems need methods to deter-
mine upper bounds for their execution times, usually called
worst-case execution times. Timing anomalies are counter-
intuitive conditions in which a local speed-up of an instruction
results in a global slow-down. Modern efficient timing analysis
tools may yield inaccurate results when applied to proces-
sors with timing anomalies while methods which are suited
for timing-anomalous systems are computationally expensive.
Timing anomaly identification is key in choosing the right
analysis technique for a given processor. In this paper, for
the first time, an automated timing anomaly identification
approach based on formal methods is presented. We validate
the method by applying it to a simplified microprocessor using
a commercial model checking tool.

Keywords: Real-time system verification, Worst-case
execution time (WCET), Timing anomalies, Formal meth-
ods

I. INTRODUCTION

Worst-case execution time (WCET) analysis is a major
technique in verification of real-time systems, i.e. ensuring
that the system will perform a given task not exceeding
a given time limit [1]. WCET of a system’s tasks is also
required for schedulability analysis of the system. There are
several WCET concepts. Under the unit time abstraction
every assembler instruction is assigned the duration of one
and consequently WCET analysis is reduced to counting
the number of executed instructions [2]. WCET has also
been defined for higher abstraction levels when architecture-
specific information is not employed [3]. In this work,
we focus on a more accurate WCET definition: cycle-

accurate WCET, which takes into account that assembler
instructions may require different number of cycles to be
executed. Moreover, the number of cycles may depend
on the operands and/or the system state (e.g., whether
or not an operand is in cache). Due to these non-trivial
dependencies, cycle-accurate WCET cannot be computed
exactly in general, so WCET estimates are used. While
WCET underestimations are unacceptable, overestimations
cannot be avoided in general. There are significant efforts
to derive overestimations that are as tight as possible [4].
For some processor architectures with variable instruc-
tion execution times, the worst-case execution time of an
individual instruction may not contribute to the longest
possible execution time of the program. Similarly, a local
short execution time may lead to a worse global time. Such
behavior is referred to as a timing anomaly [5]. An instance
of a timing anomaly is a cache miss which results in a
shorter global execution time than a cache hit. Some WCET
estimation methods consider the control-flow graph, assign
worst-case local execution times to the nodes of the graph
and try to construct a path through the graph such that
the sum of the local WCETs on the path is maximal. The
global WCET is given by that sum. While such methods
are computationally efficient, they are not applicable to
systems that are prone to timing anomalies. Hence, it is
important to know whether timing anomalies can occur
in a system before performing WCET analysis. If timing
anomalies cannot be ruled out, computationally expensive
approaches such as exhaustive enumeration of all possible



paths may be required. Alternatively, techniques such as
program code modification [5] may be employed to make
efficient and tight WCET estimation possible.

Many classes of microprocessors cannot have timing
anomalies because they lack architectural features necessary
to induce these non-trivial conditions. For all other proces-
sors, the susceptibility to timing anomalies is presently de-
termined in a long and error-prone process. In this paper, we
present for the first time an automatic method that identifies
timing anomalies in a given processor using model check-
ing. For the analyzed processor (represented in VHDL), a
property is derived such that input sequences satisfying this
property correspond to a program which exposes a timing
anomaly. The input sequences are determined using model
checking. Model checking has recently been suggested for
use in WCET analysis itself [6]. However, its application
to timing anomaly identification is new.

As a case study, we applied our method to a simple mi-
croprocessor with a Tomasulo scheduler, which is prone to
timing anomalies due to out-of-order instruction scheduling.
We present the property for timing anomaly identification
for this processor and report the application of commercial
bounded model checking software.

The remainder of the paper is organized as follows. The
next two section reviews the basics of timing anomalies.
Section III presents the proposed method. Experimental
results on a case study are reported in Section IV. Section V
concludes the paper.

II. TIMING ANOMALIES

An instruction may require a different number of cycles
to execute depending on the current state of a processor,
e.g. whether or not an operand is in the cache. Timing
anomalies are counter-intuitive influences of the (local)
execution time of a single instruction on the (global) overall
execution time of the whole program. If the execution takes
AT cycles less in one processor state than in an other, a
timing anomaly is given if either the overall program runs
longer in the first processor state, or if it is accelerated
by more than AT cycles. Of particular concern are cases
in which a local acceleration may result in a global slow-
down. In order to illustrate this phenomenon, an example
from [5] is briefly repeated here.

A sequence of five instructions A; B; C; D; E is run on
a simplified PowerPC architecture. A is a load instruction
which requires 2 cycles if the load address hits the cache
and 8 cycles otherwise; B and C are ADD instructions
which take one cycle each to execute; and D and E are
MUL instructions executed by the multiple-cycle integer
unit with latency of 4 cycles. B depends on the result of A,
D depends on the result of C, and E depends on the result
of D. Out-of-order execution is possible for ADD and MUL
instructions.

Figure 1 shows the activity of the three units needed
for executing the program if instruction A hits the cache
(above) and if A misses the cache (below). In the former
case, B is executed immediately after A (in cycle 3). B is
preferred over C because it is older. Consequently, C can
start only in cycle 4 and D and E have to wait for the result
of C because of dependencies. In the latter case (cache miss)
B must wait for the result of A (cycle 11). Hence, C is
scheduled in the cycle in which it is issued (cycle 3), and D
and E are executed one cycle earlier. The overall execution
time is reduced from 12 to 11 cycles despite the cache miss.

Timing anomalies are not an issue if the complete state
of the processor and all its inputs are known, as the
processor is a deterministic system and there is only one
possible execution path with well-defined execution time.
As a consequence, determining the execution time for every
possible state and input sequence and taking the maximum
value would result in an accurate WCET. Clearly it is
not an option for any realistic processor as the state and
input space are huge. Hence, the WCET estimation methods
use approximate information. For instance, in the example
above there is no exact knowledge on the cache content,
so it is impossible to tell whether the load operation will
result in a cache hit or miss and thus how many cycles it
will take. An efficient analysis method would assume the
worst-case behavior, which is incorrect in the example. Due
to the timing anomaly, the correct WCET estimation method
needs to consider both cache hit and miss, determine WCET
for both cases and return the larger value as the global
WCET. Clearly, if there are many such ‘forks’, the method
has to consider a high number of paths potentially leading to
global WCET. Every situation for which timing anomalies
are not ruled out and in which n different option exist will
increase the number of paths to be considered by the factor
of n. That is why the identification of timing anomalies, in
particular proving their absence, can significantly reduce the
complexity of the WCET algorithm. If timing anomalies can
be ruled out altogether, only one path needs to be considered
and local worst case can be safely assumed on every node
along this path.

Not all possible timing anomalies will invalidate WCET
analysis. We call timing anomalies which may have im-
plications on WCET estimation strong timing anomalies
and timing anomalies which will never invalidate WCET
results weak timing anomalies. An instance of a weak
timing anomaly is a local speed-up resulting in an even
larger global speed-up [5]. This timing anomaly is weak
because it does not invalidate WCET results if worst-case
local behavior is assumed. Since the purpose of this work
is to improve the WCET methodology, we focus on strong
timing anomalies (which will be introduced more formally
in Section III).

For WCET analysis of a processor, it is important to
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know whether it can have timing anomalies. State-of-the-
art WCET techniques perform microarchitecture analysis
first and then determine the worst-case path. If the microar-
chitecture analysis relies on the premise that local worst-
case scenarios lead to global worst-case execution times,
it cannot be used for processors with timing anomalies.
On the other hand, considering all possible local scenarios
for microarchitecture analysis is conservative but leads to a
much more expensive timing analysis.

Note that the number of extra cycles due to a timing
anomaly may not be bounded (domino effect). An example
for this effect has been shown in [5], and Schneider [7]
demonstrated it for the Motorola PowerPC 755.

III. AUTOMATIC TIMING ANOMALY IDENTIFICATION

In the existing literature, timing anomalies are defined
in an semi-formal way [5]. To handle timing anomalies by
model checking, a mathematical formalization is required.
As mentioned above, we are interested only in strong
timing anomalies, i.e. ones which may have implications
for WCET analysis. A strong timing anomaly is present
if a program run where local worst-case is assumed for
every instruction is faster than some other run of the same
program. Consequently, we focus on instances where a local
speed-up results in a global deceleration. Although other
types of timing anomalies (weak timing anomalies) are
known, they are not a primary concern for WCET analysis.

We distinguish between two problems: code-specific tim-
ing anomaly identification (for a given microprocessor and
a given piece of program code (software) to be executed on
that processor), and code-independent timing anomaly iden-
tification (determining whether the microprocessor as such

Timing anomaly example from [5]

is prone to timing-anomalous behavior). In the code-specific
case, the existence of two different execution paths through
the code which expose a timing anomaly is investigated.
For the code-independent case, we define a processor to be
timing-anomalous iff there is at least one code sequence
for which a timing anomaly occurs. The code-independent
problem is more challenging than the code-specific problem
because it has a larger solution space. On the other hand,
it is also more general: if the absence of timing anomalies
has been proven for a microprocessor, this means that this
microprocessor’s features are incapable of creating a timing
anomaly no matter which software is run on the processor.
As a consequence, efficient WCET tools which assume the
absence of timing anomalies can safely be applied for any
code on this processor. If a processor has been found to be
timing-anomalous, it may be worth running code-specific
timing anomaly identification for a given software, because
the timing anomaly may not occur for this code (in that
event, efficient WCET determination is available).

In this paper, we target the more difficult problem
of code-independent timing anomaly identification which
produce results valid for arbitrary software. Our method
is constructive, i.e., we determine a piece of code which
exposes the timing-anomalous behavior as a part of the
solution (along with a detailed trace). Note that other publi-
cations [5] consider the code-specific version of the problem
(and their approach is not based on formal methods). In our
approach, it is possible to add constraints which specify the
instruction sequence. By doing so, it is possible to solve also
code-specific problem instances using the same framework.

For identifying strong timing anomalies in a micropro-
cessor, the processor is modeled as a finite state machine.



Two almost identical instances of the processor, C'PUy
and C'PUy, are instantiated. The difference between C PUy
and C'PUj, is that all features that might cause a timing
anomaly are disabled for C PUy (f stands for “full-feature”
and d stands for “disabled”). For instance, C'PU,; may not
access the cache, i.e. every memory access results in a cache
miss for CPUy (but not necessarily C'PUy). Our goal is
to find an input sequence (assembly program) which will
lead to a strong timing anomaly (i.e. there is a cycle ¢,
in which CPU; overtakes CPUy and a later cycle ¢; in
which CPU, overtakes CPUy), or to prove that no such
input sequence exists. This is accomplished by formulating
a property (described below) and running a model checking
tool for this property.

We require that CPUy and C'PU,4 have an instruction
counter 1C'. We refer to the instruction counter of CPUy
(CPUy) as ICy (ICy). For a cycle t, IC;(t) gives the
number of instructions that have been completed by C'PU;
up to this cycle (i € {f,d}). Note that IC' does not
correspond to the program counter PC which contains the
memory address of the next instruction to be read by the
CPU.

IC¢(t) > IC4(t) means that in cycle ¢, CPUy executed
more instructions as C'PUy, ie., CPUy has overtaken
CPU,. If there is no register /C' in the processor itself,
it must be added. Note that it is required only for analysis
(identification of timing anomalies), so it is not actually
implemented in hardware. The needed functionality is very
simple (a few lines of VHDL code), and its insertion can
be automated. After the timing anomaly identification pro-
cedure is complete, the added register /C' can be removed
from the design model again.

Now the property for timing anomaly identification is
described. We assume that the input to the processor is
a stream of instructions. Input;(c) (¢ € N) denotes the
t instruction received by C'PU; (note that the instruc-
tions may be executed out-of-order, so the M received
instruction is not necessarily the M executed instruction).
State;(to) denotes the state of C'PU; in cycle to. However,
the property considers only the relevant part of the system
state, which does not include register file, cache and branch
predictors. This is formalized by having a projection mre;
on the relevant part of the state. g (State;(to)) is the
relevant part of the state of C'PUj; in cycle ty. The property
is:

Vto e N : [nRel(smte 1(t0)) = e (Statea(to))
A(Ve € Nz Inputs(c) = Inputy(c))
/\ICf (to) > ch(to)

— Vt1 >ty ZICf(tl) ZICd(tl). (1)

The property states that C'PU; has no strong timing
anomaly (if a strong timing anomaly exists, model checking
will yield a counterexample). In more detail, if C' PU; and
CPU, start in the same states and on the same instruction
stream and C'PU; has overtaken C'PUy in cycle ¢ (local
speed-up), CPUy will never overtake CPUy (no global
slow-down). Note that C'PU, is not the actual processor
under consideration but an artificial finite state machine
used to provide a reference point. The modifications done in
CPU, correspond to the assumptions which the WCET al-
gorithm makes about the CPU under consideration (C' PUy).
Since the WCET algorithm does not take register or cache
contents into account, it would never consider the speed-up
of the MUL instructions but rather assume local worst case.

CPU, cannot have a timing anomaly because it does
not have varying execution times for instructions (but the
processor under consideration is definitely not restricted
to static instruction times). The register files, caches and
branch predictors of C'PU; and C'PU; may differ as
pointed out above. The functional outputs of the processors
are ignored by the property; only the instruction counters
ICy and ICy are used.

If the property from Eq. (1) has been falsified by model
checking, the counterexample yields an input sequence
(assembly program) which causes a timing anomaly due
to an enabled feature (i.e. CPU, with the feature disabled
is behind C'PUy in cycle ¢, but overtakes it in a later cycle
t1). Note that a local speed-up on CPU, is impossible,
so it is sufficient to consider timing-anomalous behavior of
CPU;.

If the property has not been falsified, it is a formal
proof that the strong timing anomaly will not occur for
any input sequence. This means that the WCET tool can
safely assume that the CPU behaves like the hypothetical
processor C'PU,. This simplifies the WCET analysis be-
cause local worst case can be assumed for every instruction.
Since there are provably no timing anomalies, the resulting
WCET is a valid upper bound, i.e., it cannot fall below the
accurate execution time for any input sequence. As a result,
the WCET tool run time is reduced without sacrificing
accuracy.

The approach presented so far handles the code-
independent timing anomaly identification. If the program
code is known, the property from Eq. (1) is easily mod-
ified to incorporate that information: Let the program se-
quence be Instry; Instry;. .., Instr,,. Instead of requiring
Inputs(c) = Inputq(c), the modified formula is then
Inputy(c) = Inputy(c) = Instr.. Note that the solution
space is reduced by this restriction, which is advantageous
for efficiency.
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IV. EXPERIMENTAL RESULTS

In this section, we consider a processor with two func-
tional units (F'U; and F'U,) and a Tomasulo-style scheduler
[8]. F'U; can execute ADD and MUL instructions, and F'Us
can only execute ADD instructions. The execution of an
ADD instruction always takes 6 cycles; the execution of
a MUL instruction takes 14 cycles. As a speed-up, the
execution of a MUL takes only 5 cycles if one of the
arguments is 0 (a similar speed-up also exists in certain
PowerPC architectures). The result of either FU is written
on a Common Data Bus (CDB). This takes 2 cycles if the
CDB is available immediately (i.e. not being written by the
other FU). The values on the CDB are written back into
the register file which consists of eight data registers RO
through R7. If a value of a register that is on CDB but not
yet written back is requested, it is taken directly from CDB.

After an instruction has been received, fetching, de-
coding and scheduling of an instruction takes 2 cycles
until the execution can start if all operands are available.
Consequently, if two instructions are scheduled on the same
FU, the minimal time between these instructions is 4 cycles.

In order to determine whether the speed-up of the
MUL instruction from 14 to 5 cycles can lead to a strong
timing anomaly, we are employing bounded model checking
(BMCO) [9] as the model checking engine. BMC considers
only input sequences of bounded length (where the bound
is given by the BMC constant k), which makes it a semi-
complete method. BMC is complete if the system under
consideration has a diameter d, i.e. the maximal length of
a relevant path with respect to the regarded property, which
is less than k. The derivation of useful diameter estimates is

a focus of our future research; in this paper we set k driven
by the problem instance. Note that we use BMC for the sake
of efficiency; it would be possible to use unbounded model
checking tools which would result in a complete procedure.

We instantiate two copies of the processor, CPU; and
CPUy. Both CPUy and CPUg have FU; and FUs,, but
FU, of CPU; supports the MUL speed-up and F'U; of
CPUy does not support it. All other features of CPUjy
and C'PUy are identical and the instruction counters IC'y
and ICy are provided (see Fig. 2). Then, the property from
Eq. (1) is formulated and BMC (with k£ = 64) is run.

We used the tool CVE gateprop by OneSpin Solutions
for BMC. Its input language supports keywords such as
during (to specify that a condition holds within a time
interval), which makes it very convenient to formulate
Eq. (1).

It turns out that BMC can find a counterexample. The
automatically generated assembly program is given below
(the destination register is on the left hand side):

ADD R7, RO, R1
MUL Ré6, R4, R6
ADD R7, RO, R1
MUL R4, R7, R7
ADD Re6, R7, R7

AR

The output of the property checker includes a full trace
demonstrating the timing anomaly. Figure 3 shows parts
of the trace, namely the instructions processed by F'U; and
FU, of CPUy and CPUy and the instruction counters IC'y
and IC,. Recall that F'U; can execute ADD and MUL
instructions while /'U;, can execute only ADD instructions,
and that a speed-up can be employed by F'U; of CPUy if an
operand of MUL is O but this speed-up has been disabled for
CPUjy. Also recall that /Cy and ICy contain the number
of instructions executed so far.

It is clearly seen that initially C'PUy overtakes C'PUy,
e.g. in cycle tg =20 (ICy =2, ICy = 1) because CPUy
can utilize the speed-up for executing instruction 2 which
CPU, cannot. However, in cycle t; = 41 C'PU, overtakes
CPU; (ICy = 3, IC; = 4) although it cannot use the
speed-up. Notice that the first 11 cycles are consumed
by setup activities aimed at bringing the processor into a
reachable state. Shaded semicircles indicate the instruction
decoding and the write-back. Both require two cycles, with
exception of instruction 1 in C'PUy, which cannot be
written back in 2 cycles because the CDB is occupied by
instruction 2 and F'U; has a higher priority. The computed
result can be written on the CDB only in cycle 18. The
same situation occurs for instruction 3 in CPU,.

By using BMC, a strong timing anomaly could be iden-
tified for the example processor. A trace clearly showing
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Fig. 3. Trace generated by BMC demonstrates a strong timing anomaly

the anomalous behavior has also been generated. For such
a processor, efficient WCET estimation techniques based
on local analysis followed by worst-case path search could
produce wrong results and should be avoided.

V. CONCLUSIONS

Timing anomalies may invalidate the results of efficient
worst-case execution time analysis tools. As a consequence,
it is important to know whether a given processor can
exhibit timing-anomalous behavior. Currently, this is an
error-prone manual task for which no tool support exists.

We presented, for the first time, an automatic method for
timing anomaly identification. It is based on model check-
ing, a highly successful technique from the field of formal
verification. We presented the property to detect the timing
anomaly. We reported the application of our method to
a simplified timing-anomalous processor using a commer-
cial bounded model checker. This yielded a detailed trace
demonstrating the anomaly and hence the inapplicability
of standard timing analysis tools. For a processor shown to
be timing-anomalous, either more elaborate WCET analysis
techniques must be used, or the feature that has led to the
anomaly must be disabled.

We are currently planning to apply our technique to
larger microprocessors. This will necessitate the use of
abstraction techniques such as slicing which must be in-
corporated into the property and may lead to a completely
new definition of a timing anomaly. A further point of
investigation is the application of complete methods such
as unbounded model checking or making BMC complete
by a tight approximation of the diameter of the system.
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