ULTIMATE & FONTSON

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Markus Lindenmann, Betim Musa, Christian Schilling, Stefan Wissert, Andreas Podelski

Automata-theoretic proof of program correctness

Program \mathcal{P} is correct because each error trace is infeasible, i.e. the inclusion $\mathcal{P} \subseteq \mathcal{A}_1 \cup \mathcal{A}_2$ holds.

Program / automaton \mathcal{P} whose language is the set of error traces.

- p = 0 $p \neq 0 \quad q_1 \quad \Sigma \setminus \{ p := 0 \}$ p = 0 $false \quad q_2 \quad \Sigma$
 - Automaton A_1 whose language is a set of infeasible traces.

Automaton A_2 whose language is a set of infeasible traces.

- Alphabet: set of program statements $\Sigma = \{ p := 0, n < 0, n >= 0, p == 0, n == 0, n != 0, p := 0, n -- \}$
- ullet The language of ${\mathcal P}$ is the set of error traces.
- In the first iteration, we analyze feasibility of the error trace $\pi_1 = p = 0$ n >= 0 p == 0. π_1 is infeasible. Via interpolation, we obtain the following Hoare triples.

We construct the automaton \mathcal{A}_1 such that its language is the set of all traces whose infeasibility can be shown using the predicates true, $p \neq 0$, and false.

- \bullet Analogously, in the second iteration the automaton \mathcal{A}_2 is constructed.
- We check the inclusion $\mathcal{P} \subseteq \mathcal{A}_1 \cup \mathcal{A}_2$ and conclude that each error trace is infeasible and hence \mathcal{P} is correct.

Definition Given an automaton $\mathcal{A} = (Q, \delta, q_{\mathsf{init}}, Q_{\mathsf{final}})$ over the alphabet of program statements, we call a mapping that assigns to each state $q \in Q$ a predicate φ_q a Floyd-Hoare annotation for automaton \mathcal{A} if the following implications hold.

$$(q, s, q') \in \delta \implies \{\varphi_q\} s \{\varphi_{q'}\}$$
 is a valid Hoare triple $q = q_{\mathsf{init}} \implies \varphi_q = true$ $q \in Q_{\mathsf{final}} \implies \varphi_q = false$

Theorem If an automaton \mathcal{A} has a Floyd-Hoare annotation, then \mathcal{A} recognizes a set of infeasible traces.

Interpolation with unsatisfiable cores

Level 1: "interpolation" via

true

y = 0

 $y = 0 \land i = 0$

 $y = 0 \land i = 0 \land x = y$

 $y = 0 \land i = 1 \land x = y$

i := 0

x := y

x >= 42

false

• strongest post

Level 2: interpolation via

- strongest post
- live variable analysis
- Level 3: interpolation via
- strongest post
- live variable analysis
- unsatisfiable cores

Algorithm (for level 3)

- Input: infeasible trace x_1, \ldots, x_n and unsatisfiable core $\mathsf{UC} \subseteq \{x_1, \ldots, x_n\}$
- Replace each statement that does not occur in UC by a skip statement or a havoc statement.
 - assume statement $\psi \rightsquigarrow \text{skip}$ assignment statement $x:=t \rightsquigarrow \text{havoc } x$
- Compute sequence of predicates $\varphi_0, \ldots, \varphi_n$ iteratively using the strongest post predicate transformer. sp

$$\varphi_0 := true$$

$$\varphi_{i+1} := sp(\varphi_i, \pounds_{i+1})$$

- Eliminate each variable from predicate φ_i that is not live at position i of the trace.
- Output: sequence of predicates $\varphi_0, \ldots, \varphi_n$ which is a sequence of interpolants for the infeasible trace $\mathfrak{x}_1, \ldots, \mathfrak{x}_n$