
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann
Christian Schilling

Delivery: November 28th, 2016
16:15 via the post boxes

Discussion: October 30th, 2016

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 6

Exercise 1: Invariant checking I 2 Points
Apply the “DFS-based invariant checking” algorithm which was presented in the lecture
to the following transition system whose set of atomic propositions is AP = {a, b}. The
invariant Φ to be checked is the propositional logical formula a.
Whenever you iterate over a set of states, always take state si before state sj if i is smaller
than j.
Present the execution of the algorithm by writing down the contents of the set U and the
stack π directly before every call to the procedure DFS.

s0 {a} s1 {a}

s2

{a, b}

s3

{a}

s4

{b}

Exercise 2: Invariant checking II 1 Point
The “DFS-based invariant checking” algorithm that was presented in the lecture always
computes a minimal bad prefix. However, the algorithm does not necessarily compute a
bad prefix of minimal total length (there might be two minimal bad prefixes of different
length). What is an example that shows that the prefix that is returned does not always
have minimal total length?

For this purpose, provide the following.

• A transition system that has three states s0, s1, s2.

• An invariant.

• The (non-minimal) bad prefix that is computed by the algorithm that uses the
following convention for iterating over a set of states. Always take state si before
state sj if i is smaller than j.

• A minimal bad prefix.

1

Exercise 3: Invariant checking III 2 Points
Give an algorithm (in pseudocode, analogously to the algorithm in the lecture) for in-
variant checking such that, in case the invariant is refuted, a bad prefix of minimal total
length is provided as an error indication.
The algorithm should terminate for all finite transition systems.

Hint : You may modify the algorithm presented in the lecture appropriately. You may
also want to use two data structures: A queue and a map.
A queue is a list with two operations:

• void add(Element) adds a new element at the end.

• Element remove() removes the element at the front (FIFO principle).

A map behaves like a partial function. That is, it stores a value for a given key. It has
the following operations:

• void add(Key, Value) adds a new mapping from a key to a value.

• Value get(Key) returns the value for the given key.

• boolean has(Key) returns true iff the map stores a value for the given key.

You can use the map to store a predecessor state for a given state. This can be helpful
for constructing the bad prefix in the end.

Exercise 4: Terminal states revisited 1 Point
In Exercise 4 on Sheet 5 we considered a transformation of a transition system with termi-
nal states to a transition system without terminal states. Recall the following condition.

Note that the transformation preserves trace-equivalence, i.e., if TS 1,TS 2 are
transition systems (possibly with terminal states) such that Tracesfin(TS 1) =
Tracesfin(TS 2), and TS ′

1,TS
′
2 are the transformations of TS 1,TS 2, respec-

tively, then Traces(TS ′
1) = Traces(TS ′

2).

In the original exercise there was a typo: the two (underlined) occurrences of “Tracesfin”
were instead written as “Traces”.

Consider the following transformation:

Given a transition system TS = (S,Act ,→, I,AP , L), we construct the tran-
sition system TS ′ = (S ′,Act ,→′, I,AP , L′) as follows. We introduce a new
sink state ⊥, i.e., S ′ = S] {⊥}. We add the missing transitions to the sink
state and a self-loop, i.e.,

→′ =→]{s α−→ ⊥ | s ∈ S, α ∈ Act , 6 ∃s′ ∈ S. s α−→ s′}]{⊥ α−→ ⊥ | α ∈ Act}.

The labels of the old states are the same, and we label the sink state with the
empty set, i.e., L′ is the function mapping from S ′ to 2AP given by

s 7→

{
L(s) s ∈ S
∅ s = ⊥.

2

Construct two transition systems TS 1 and TS 2 such that Traces(TS 1) = Traces(TS 2)
but after applying the transformation we have Traces(TS ′

1) 6= Traces(TS ′
2).

Exercise 5: Properties of the closure 2 Points
Prove that for the closure operator cl the following inclusion (resp. equality) holds for
every linear time property P .

(a) P ⊆ cl(P)

(b) cl(P) = cl(cl(P)) (the closure operator cl is idempotent)

3

