Exercise 1: Checking regular safety properties
3 Points
Consider the following transition system TS over the atomic propositions $AP = \{a, b, c\}$.

In the lecture we have seen an algorithm for checking regular safety properties. The safety property E was given as an NFA A that was accepting the bad prefixes of E. The algorithm first computes the product $TS \otimes A$ and then checks whether the invariant $\neg F$ holds, where F is the set of final states of A. If the invariant holds for $TS \otimes A$, then the property E holds for TS. Otherwise, the property E does not hold and the algorithm returns a sequence of states of TS as an error indication.

Apply the algorithm for the properties that are given by the following NFA.

(a) A_1 :

(b) A_2 :

Exercise 2: Non-blocking symbolic NFA
1 Point
Consider the following DFA (i.e., deterministic NFA) A over the alphabet $\Sigma = 2^{AP}$, where $AP = \{a, b, c\}$.

Give a non-blocking DFA A' such that both automata accept the same language (i.e., $L(A') = L(A)$).
Exercise 3: Büchi automata I 2 Points
Describe the ω-languages of the following Büchi automata over the alphabet $\Sigma = \{A, B\}$. You may use ω-regular expressions or natural language.

(a)

(b)

Exercise 4: Büchi automata II 1 Point
Construct a Büchi automaton over the alphabet $\Sigma = \{A, B\}$ whose language consists of all ω-words that contain only finitely many A.

Exercise 5: Minimal bad prefixes 1 Point
Provide an example for a regular safety property P_{safe} over some set of atomic propositions AP and an NFA A for its minimal bad prefixes such that

$$L_\omega(A) \neq (2^{AP})^\omega \setminus P_{safe}$$

when A is viewed as a Büchi automaton.

Exercise 6*: Inclusion 1 Point
In the algorithm for checking regular safety properties we exploited the following equivalence for languages $L_1, L_2 \subseteq \Sigma^*$ for some alphabet Σ.

$$L_1 \subseteq L_2 \text{ iff } L_1 \cap \overline{L_2} = \emptyset$$

Here, we use $\overline{L_2}$ to denote the complement $\Sigma^* \setminus L_2$.

Show that this equivalence holds.