
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann
Christian Schilling

Delivery: January 16th, 2017
16:15 via the post boxes

Discussion: January 18th, 2017

Tutorial for Cyber-Physical Systems - Discrete Models
Exercise Sheet 11

Exercise 1: SCCs and NBA emptiness 2 Points
Given a directed graph, a connected component is a set of nodes X such that for each
two nodes x1, x2 ∈ X there is a path from node x1 to node x2 and vice versa there is a
path from node x2 to node x1.
A strongly connected component (SCC) is a connected component that is maximal, i.e.,
a connected component X such that each strict superset Y ) X is not a connected
component.
We call a strongly connected component nontrivial if it contains at least one edge (i.e.,
if there is one node that has a self loop or if there are at least two nodes).

Consider the following graph representation of an NBA A.

s5 s4 s0 s1

s3

s2s6

A
B

B
B

A

B

B

B

A

B

(a) Determine all strongly connected components (SCCs) of this graph.

(b) Does A accept the word ABω?

(c) In the lecture we learned a naive algorithm for checking language emptiness of NBA.

The idea of the algorithm was: Check for each accepting state (1) if the state is
reachable from some initial state and (2) if the state is reachable from itself.

Assume that you have given not only the NBA but also all its SCCs. Describe
an algorithm for checking language emptiness that is more efficient that the naive
algorithm. It is sufficient if your algorithm returns “YES” if the automaton does
not accept any word, and “NO” otherwise, the algorithm does not have to provide
a counterexample in case the answer is “No”.

You do not need to argue why your algorithm is correct.

1



Exercise 2: Checking ω-regular properties 4 Points
Consider the transition system TS Sem for mutual exclusion with a semaphore below.

Parallelism and Communication 45

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

Figure 2.8: Mutual exclusion with semaphore (transition system representation).

first-in first-out (FIFO), or some other scheduling discipline can be chosen. Alternatively,
another (more concrete) mutual exclusion algorithm could be selected that resolves this
scheduling issue explicitly. A prominent example of such algorithm has been provided in
1981 by Peterson [332].

Example 2.25. Peterson’s Mutual Exclusion Algorithm

Consider the processes P1 and P2 with the shared variables b1, b2, and x. b1 and b2 are
Boolean variables, while x can take either the value 1 or 2, i.e., dom(x) = { 1, 2 }. The
scheduling strategy is realized using x as follows. If both processes want to enter the
critical section (i.e., they are in location waiti), the value of variable x decides which of
the two processes may enter its critical section: if x = i, then Pi may enter its critical
section (for i = 1, 2). On entering location wait1, process P1 performs x := 2, thus giving
privilege to process P2 to enter the critical section. The value of x thus indicates which
process has its turn to enter the critical section. Symmetrically, P2 sets x to 1 when
starting to wait. The variables bi provide information about the current location of Pi.
More precisely,

bi = waiti ∨ criti .

bi is set when Pi starts to wait. In pseudocode, P1 performs as follows (the code for process
P2 is similar):

Let Plive be the following ω-regular property over AP = {w1, c1}:

“Whenever process 1 is in its waiting location (w1), it will eventually enter
its critical section (c1).”

Note that the labeling function is given implicitly by the state names, e.g., w1 holds in
all states whose name contains this string.

(a) Depict an NBA A for Plive and an NBA A for the complement property
P live =

(
2AP

)ω \ Plive .

(b) Check if TS Sem 6|= Plive holds by performing the following steps that were presented
in the lecture.

(i) Depict the reachable fragment of the product TS Sem ⊗A.

(ii) Check if this product transition system satisfies the persistence property “even-
tually forever ¬F”. In case the product satisfies the property argue why this
is the case. Otherwise, give a path in the product that shows the violation of
the persistence property and give the corresponding path in TS Sem that shows
the violation of Plive .

2



Exercise 3?: Checking ω-regular properties with automata 1 Point
Consider again the transition system TS Sem and the property Plive from Exercise 2.
Use the web interface of the Ultimate Automata Library1 to check (again) if the tran-
sition system TS Sem satisfies the property Plive .

Follow the approach outlined on slides 82 f. of lecture 21.

• Construct an NBA ATSSem
that accepts the traces of TS Sem .

• Construct the NBA A.

• Construct an NBA Ainter that accepts the language L(ATSSem
) ∩ L(A) (operation

BuchiIntersect).

• Check if this language is the empty set (operation BuchiIsEmpty).

You should submit a file containing the automata declarations and the required operations
using the notation from the web interface to your tutor via email.

Hint: the following code can be used to obtain some ω-word that is accepted by the
automaton A inter.

LassoWord omegaWord = getAcceptedLassoWord(A_inter);

print(omegaWord);

1https://ultimate.informatik.uni-freiburg.de/automata_script_interpreter

3

https://ultimate.informatik.uni-freiburg.de/automata_script_interpreter

