
Prof. Dr. Andreas Podelski
Dr. Matthias Heizmann

Preference deadline: July 12, 2018
Discussion: July 16, 2018

Tutorial for Program Verification
Exercise Sheet 11

Exercise 1: Least fixed point of post# 2 Points
Let S be a set of states. Let the concrete domain D be the powerset of S, i.e., D := P(S).
Let D# ⊆ D be the abstract domain. Let α : D → D# be defined as follows.

α(x) :=
⋂
{y ∈ D# | x ⊆ y}

For transition relation ρ and φinit ∈ D define post#(s, ρ) := α(φinit) ∪ α(post(s, ρ)).

In the lecture (slides 23-26) you have seen a proof by induction that the least fixed
point1 of post# is the smallest (i.e., most precise) element of the abstract domain that is
inductive under post w.r.t. φinit.

(a) Give a more elegant proof that does not use induction.

(b) In the lecture we have seen several properties of α. Which ones did you need in the
proof?

Hint : It suffices to show that lfp(post#) ⊆ φ holds for any φ with the following properties:

(1) φ is an element of the abstract domain, i.e., φ ∈ D#.

(2) φ is inductive under post w.r.t. φinit, i.e., φinit ⊆ φ and post(φ, ρ) ⊆ φ.

Exercise 2: Apply AbstRefineLoop 2 Points
Consider the following program

P = (V, pc, ϕinit ,R, ϕerr)

where the tuple of program variables V is (pc, x), the inital condition ϕinit is pc = `1, the
error condition ϕerr is pc = `3, and the set of transition relations R contains the following
transitions.

ρ1 = (move(`1, `2) ∧ x′ = 0)

ρ2 = (move(`2, `2) ∧ x′ = x+ 1)

ρ3 = (move(`2, `3) ∧ x = −1)

`1

`2

x′ = 0

x′ = x+ 1

`3

x = −1

1Let f : L → L be a function over some domain L. The least fixed point of f , written lfp(f), is a
smallest set X such that f(X) = X. In this exercise the least fixed point is unique.

1

As usually, we presume that the domain of the variable x is the set of all integers Z.

(a) Is the program P correct?

(b) Apply the algorithm AbstRefineLoop for three iterations. Write down the set
of predicates in each iteration. Write down the result of AbstReach for some
iteration of your choice.

(c) Will the algorithm AbstRefineLoop terminate? Why?

(d) Propose an optimization for RefinePath such that AbstRefineLoop termi-
nates.

(e) Consider the program P ′ that is very similar to P but where

• the domain of the variable x is the set of all integers that are greater than or
equal to −231 and smaller than or equal to 231 − 1 and where

• the plus operator has the same semantics as in Java (e.g., if you add one to
the largest number in the domain you get the smallest number of the domain).

Is the program P ′ correct? Will the algorithm AbstRefineLoop terminate on
P ′? Why? How many iteration are needed?

Exercise 3: Apply trace abstraction 2 Points
Consider the following program and the corresponding control automaton AP .

int x, y, z, w;

void foo() {

1: do {

2: z := 0;

3: x := y;

4: if (w == 17){

5: x++;

6: z := 1;

}

7: } while(x != y)

8: assert (z != 1);

}

`2

`3

`4 `5

`6`7

`8

`err

z:=0

x:=y

w==17

x++

z:=1

w!=17

x==y

z==1

x!=y

Give two error traces π1, π2 and construct corresponding interpolant automata A1,A2

such that the inclusion L(AP) ⊆ L(A1) ∪ L(A2) holds.

Remark: We call a trace π infeasible if post(true, π) = false holds.

2

Exercise 4: Regular traces 1 Point
Consider the program whose set of control flow traces is given by the following regular
expression.

assume(x is prime)) (x--)∗ assume(x = 0)

(a) Consider the pre-/postcondition pair (true, true).

(i) Is the set of correct control flow traces a regular language?

(ii) Is the set of feasible correct control flow traces a regular language?

(iii) Is the set of infeasible correct control flow traces a regular language?

(b) Consider the pre-/postcondition pair (true, false). Answer the same questions as
above.

3

