Exercise 1: CFG for Conditional Statement 2 Points

In the lecture, we defined the notion of a control-flow graph of a given statement. This definition is not yet complete, the case of the conditional-statement was left out. Complete the definition:

Let st_1, st_2 be two statements. Let $G_1 = (Loc^1, Δ^1, ℓ^1_{init}, ℓ^1_{ex})$ be a control-flow graph for st_1, and let $G_2 = (Loc^2, Δ^2, ℓ^2_{init}, ℓ^2_{ex})$ be a control-flow graph for st_2 such that Loc^1 and Loc^2 are disjoint. Define a control-flow graph for $\text{if (expr)} \{ st_1 \} \hspace{1em} \text{else} \{ st_2 \}$.

Exercise 2: From Programs to CFGs 2 Points

For each of the programs given below, draw a control-flow graph.

(a) Code of program P_{pow}:

```plaintext
1  e := 1;
2  z := 0;
3  while (z < y) {
4    e := e * x;
5    z := z + 1;
6  }
```

(b) Code of program P_{findmin}:

```plaintext
1  i := lo;
2  min := a[lo, lo];
3  while (i <= hi) {
4    j := lo;
5      while (j <= hi) {
6        if (a[i, j] < min) {
7          min := a[i, j];
8        }
9      }
10    j := j + 1;
11  }
12  i := i + 1;
```

Exercise 3: Program Configurations

Consider the program $P = (V, \mu, T)$ with $V = \{x, y\}$, $\mu(x) = \mu(y) = \{\text{true}, \text{false}\}$ and T a derivation tree for the statement below on the left. On the right, a CFG for P is shown.

```plaintext
while (x == y) {
    y := x;
    havoc x;
}
```

Draw the reachability graph for this control-flow graph and the precondition-postcondition-pair $(x, x \rightarrow \neg y)$.

Exercise 4: Existence of Program Executions

Prove the following lemma that has been added to the slides.

Lemma (RelAndExec.2) Let $G = (\text{Loc}, \Delta, \ell_{\text{init}}, \ell_{\text{ex}})$ be a control-flow graph for the sequential composition $\text{st}_1 \text{st}_2$. There exists a program execution $(\ell_0, s_0), \ldots, (\ell_n, s_n)$ with $\ell_0 = \ell_{\text{init}}$ and $\ell_n = \ell_{\text{ex}}$, iff $(s_0, s_n) \in [\text{st}_1 \text{st}_2]$.