

Dr. Matthias Heizmann Dominik Klumpp

Tutorial for Program Verification Exercise Sheet 3

In this exercise we practice conducting proofs in the Natural Deduction proof system for propositional logic, $\mathcal{N}_{\mathsf{PL}}$. We then continue with First-Order Logic.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Natural Deduction Proofs 4 Points Prove the following implications in the Natural Deduction proof system \mathcal{N}_{PL} . That is, for an implication $\{F_1, \ldots, F_n\} \models F$, use the rules of $\mathcal{N}_{\mathsf{PL}}$ to build a derivation that shows this implication holds.

- (a) $\{A \to B\} \models \neg B \to \neg A$
- (b) $\{A \to (B \to C)\} \models A \land B \to C$

Exercise 2: Fool proof system Let us consider the "fool proof system" which is an extension of $\mathcal{N}_{\mathsf{PL}}$ by the following two rules.

$$(\mathsf{FOOL}_i)\frac{\Gamma\vDash F_1\vee F_2}{\Gamma\vDash F_i}\ i\in\{1,2\}$$

Construct a derivation where the root node is labelled by $\{true\} \models false$. (Which demonstrates that this proof system is useless because we can derive implications that do not hold.)

Exercise 3: Models for Quantifier-free Formulas 3 Points Consider the vocabulary $\mathcal{V} = (\{x, y, z\}, \emptyset, \{f, g\}, \{p\})$ and the following formula.

$$\varphi: p(f(x,y),z) \to p(y,g(z,x))$$

- (a) Consider the model $\mathcal{M} = (\mathcal{D}, \mathcal{I})$, where $\mathcal{D} = \mathbb{Z}$ and \mathcal{I} maps f to the addition function ("+"), g to the subtraction function ("-"), and p to the strictly smaller relation ("<"). Consider the variable assignment ρ such that $\rho(x) = 13$, $\rho(y) = 42$, and $\rho(z) = 1$.
 - (i) What is $[\![\varphi]\!]_{\mathcal{M},\rho}$? Show also intermediate results for at least three different subterms or subformulas.
 - (ii) Let us define ρ' as $\rho \triangleleft \{x \mapsto 55\}$ What is $\llbracket \varphi \rrbracket_{\mathcal{M},\rho'}$?
 - (iii) State an interpretation function \mathcal{I}' such that for the model $\mathcal{M}' = (\mathcal{D}, \mathcal{I}')$ the truth value $\llbracket \varphi \rrbracket_{\mathcal{M}',\rho}$ is different from the truth value $\llbracket \varphi \rrbracket_{\mathcal{M},\rho}$.

2 Points

- (iv) State a formula φ' that also contains the symbols x, y, z, f, g, p such that the truth value $[\![\varphi']\!]_{\mathcal{M},\rho}$ is different from the truth value $[\![\varphi]\!]_{\mathcal{M},\rho}$.
- (b) Consider the interpretation domain $\mathcal{D}_{\mathsf{RPS}} = \{\mathsf{Rock}, \mathsf{Paper}, \mathsf{Scissors}\}$, the function $\mathsf{fst} : \mathcal{D}_{\mathsf{RPS}} \times \mathcal{D}_{\mathsf{RPS}} \to \mathcal{D}_{\mathsf{RPS}}$ that is defined as $\mathsf{fst}(x, y) = x$ for all $x, y \in \mathcal{D}_{\mathsf{RPS}}$ and the binary relation $R_{\mathsf{win}} \subseteq \mathcal{D}_{\mathsf{RPS}} \times \mathcal{D}_{\mathsf{RPS}}$ which is defined as follows.

$$R_{win} = \{(Rock, Scissors), (Scissors, Paper), (Paper, Rock)\}$$

Let $\mathcal{M} = (\mathcal{D}_{\mathsf{RPS}}, \mathcal{I})$ be the model whose interpretation function \mathcal{I} maps f to fst, g to fst, and p to R_{win} . Let ρ be the variable assignment that is defined as follows $\rho(x) = \mathsf{Rock}, \, \rho(y) = \mathsf{Paper}, \, \rho(z) = \mathsf{Scissors}.$

- (i) What is $[\![\varphi]\!]_{\mathcal{M},\rho}$? Show also intermediate results for at least three different subterms or subformulas.
- (ii) State a formula φ' that also contains the symbols x, y, z, f, g, p such that the truth value $[\![\varphi']\!]_{\mathcal{M},\rho}$ is different from the truth value $[\![\varphi]\!]_{\mathcal{M},\rho}$.

Exercise 4: Models for Quantified Formulas

Consider the vocabulary $\mathcal{V} = (\{x, y, z\}, \{c\}, \{f\}, \{p\})$ and the following formula.

$$\varphi: \forall x. \exists y. p(f(c, y), x)$$

- (a) Consider the model $\mathcal{M} = (\mathcal{D}, \mathcal{I})$, where $\mathcal{D} = \mathbb{Z}$ and \mathcal{I} maps c to the integer number 2, f to the multiplication function ("·"), and p to the equality relation ("="). Let ρ be the variable assignment that is defined as $\rho(x) = 42$, $\rho(y) = 17$ and $\rho(z) = 23$. What is $[\![\varphi]\!]_{\mathcal{M},\rho}$? Justify your answer.
- (b) Find two models $\mathcal{M}_i = (\mathcal{D}_i, \mathcal{I}_i)$ and two variable assignments ρ_i such that $\llbracket \varphi \rrbracket_{\mathcal{M}_i, \rho_i}$ is different from $\llbracket \varphi \rrbracket_{\mathcal{M}, \rho}$ for $i \in \{1, 2\}$. The interpretation domain \mathcal{D}_1 should also be \mathbb{Z} , the interpretation domain \mathcal{D}_2 should be some different set.

Exercise 5: FOL Satisfiability

2 Points

2 Points

For each of the following formulas φ give a model \mathcal{M}_i with $[\![\varphi]\!]_{\mathcal{M}_i,\rho} = \mathbf{true}$. You do not have to give a variable assignment ρ because for each of the formulas the evaluation to a truth value is independent of the variable assignment.

- (a) $\varphi_1 : equals(add(2,2),5)$
- (b) $\varphi_2 : \forall x. \ p(x, x)$
- (c) $\varphi_3 : \exists y. \forall x. p(x, y)$
- (d) $\varphi_4 : \forall x. (p(x, f(x)) \land \neg p(f(x), x))$

Exercise 6: Free Variables and Substitutions

2 Points

Consider the formulas φ_i and the substitutions σ_i for $i \in \{1, 2\}$ displayed below.

- (i) Compute the set of free variables freevars(φ_i) for $i \in \{1, 2\}$.
- (ii) Compute the result $\varphi_i \sigma_i$ for $i \in \{1, 2\}$.

 $\varphi_1 : \forall x'. \ (p(x, x') \land \exists x. \ p(x', x)) \text{ and } \sigma_1 : \{x \mapsto a\}$ $\varphi_2 : \forall y. \ p(x, y, z) \text{ and } \sigma_2 : \{x \mapsto f(z), z \mapsto f(y)\}$