
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on June 03, 2020
Discussion: June 03, 2020

Tutorial for Program Verification
Exercise Sheet 5

In this exercise sheet we work with First-Order Logic and First-Order Theories. The
last exercise serves as preparation for the next part of the lecture, in which we will

define the syntax (and later the semantics) of a programming language.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Sudoku in First-Order Logic 3 Points
Formalize the rules of Sudoku in First-Order Logic.
An n-Sudoku (for n ∈ N) is given as (n2 × n2)-grid of numbers from 1 to n2. The grid is
further divided into n2 squares of size (n× n). Use the following predicate and function
symbols:

• the binary equality predicate · = ·,

• the binary function num(·, ·) such that num(x, y) returns the number in column x
and row y,

• the binary function square(·, ·) such that square(x, y) returns the the number of the
square containing cell (x, y).

Assume the underlying domain contains only the elements {1, . . . , n2} and the meaning of
the equality predicate is already defined (e.g., because we consider the theory of equality).

(a) In every row, each number occurs at least once.

(b) In every row, each number occurs at most once.

(c) In every column, each number occurs at least once.

(d) In every column, each number occurs at most once.

(e) In every square, each number occurs at least once.

(f) In every square, each number occurs at most once.

1

Exercise 2: First-Order Theories 4 Points
In the lecture we have seen that the signature of Peano arithmetic does not contain a
symbol for ≥, the ”greater-or-equal” relation on natural numbers. However, we can define
this relation by a formula in Peano arithmetic.

x ≥ y :≡ ∃z . x = y + z

In a similar manner, formalize the following statements. Use only the function, con-
stant and predicate symbols of Peano arithmetic, and possibly statements you
have already defined.

Note: The purpose of this exercise is not only that we get more familiar with first-
order logic. We will later in the course learn program analyses that can only reason
about sets of program states that can be defined in a certain theory. Users and
developers of program analysis tools that have a good intuition which properties can
be expressed in certain theories can more easily estimate the power of these program
analyses.

(a) x | y, i.e., x is a divisor of y

(b) x is an odd number

(c) x is not divisible by 4

(d) x is a prime number

(e) z is the greatest common divisor of x and y

Let us now consider the combination of the theory of equality and the theory of Peano
arithmetic. Let us then consider an 1-ary function symbol that we use to represent an
array. We consider the domain of the function as the indices of the (infinite) array and
the range of the function as the values of the (infinite) array. Formalize the following
statements:

(f) The array is sorted. Positions with higher indices have (not necessarily strictly)
higher values.

(g) At all positions between five and 42 (inclusive) the value is even.

(h) Every value occurs at least at two different positions.

Exercise 3: Satisfiability of FOL Formulas 2 Points
Are the following formulas ϕi satisfiable with respect to the theory of integers TZ? Write
an SMT script to determine the satisfiability of each formula and, if it is satisfiable, a
satisfying model. You may use an SMT solver like Z31 to execute this script. If the
formula is satisfiable, give a satisfying model.

1https://rise4fun.com/Z3

2

(a) ϕ1 : ∀x, y. a 6= 21 · x + 112 · y

(b) ϕ2 : ∃x. (x = 10 · a + b ∧ a + b = 9 ∧ ¬∃y. x = 3 · y)

Exercise 4: Context-Free Grammars 2 Points

Consider the context-free grammar G = (Σ, N, P, S) over the alphabet Σ = {a, b, c} that
has the nontermination symbols N = {S,A,B} and the following derivation rules.

P = { S → AabBBc,
A→ ε | aB,
B → ab | bc | c | A }

(a) Find a word that is not in the language of G.

(b) Find a derivation tree for the word w = abcabc.

3

