
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on June 08, 2020
Discussion: June 08, 2020

Tutorial for Program Verification
Exercise Sheet 6

In this exercise we work with the programming & verification language Boogie, and our
reduced variant of this language, called Boostan.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Boogie 2 Points
Using the Boogie1 language, implement a procedure with signature

procedure gcd(x : int, y : int) returns (z : int)

that takes two (mathematical) integers x, y and, if they are both not equal to 0, computes
their greatest common divisor z. The algorithm may only make use of addition and
subtraction, but not use multiplication, division or modulo.2

You can use the Boogie interpreter Boogaloo3 to test your program. A user manual is
available online4.

Exercise 2: Boostan Grammar 2 Points
In this exercise you should propose a syntax for the Boostan programming language.
State a context-free grammar GBoo = (ΣBoo, NBoo, PBoo, SBoo) such that a word of the
generated language is a program of (your version of) the Boostan language.

In the lecture slides we propose the grammar GI = (ΣI, NI, PI, SI) for integer expressions,
with ΣI = {−,+, ∗, /,%, (,), 0, . . . , 9, a, . . . , z, A, . . . Z},
NI = {Xiexpr, Xnum, Xnum′ , Xvar, Xvar′}, SI = Xiexpr and the following derivation rules:

PI = {Xiexpr → (Xiexpr)

Xiexpr → -Xiexpr

Xiexpr → Xiexpr+Xiexpr|Xiexpr-Xiexpr|Xiexpr*Xiexpr|Xiexpr/Xiexpr|Xiexpr%Xiexpr

Xiexpr → Xvar

Xiexpr → Xnum

Xnum → 0Xnum′ | . . . |9Xnum′

Xnum′ → 0Xnum′ | . . . |9Xnum′ |ε
Xvar → aXvar′ | . . . |zXvar′|AXvar′ | . . . |ZXvar′

Xvar′ → aXvar′ | . . . |zXvar′|AXvar′ | . . . |ZXvar′|0Xvar′ | . . . |9Xvar′|ε}
1https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
2Hint: https://en.wikipedia.org/wiki/Euclidean_algorithm
3http://comcom.csail.mit.edu/comcom/#Boogaloo
4https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User%20Manual

1

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://en.wikipedia.org/wiki/Euclidean_algorithm
http://comcom.csail.mit.edu/comcom/#Boogaloo
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/User%20Manual

Next, we proposed the grammar GB = (ΣB, NB, PB, SB) for Boolean expressions, with
ΣB = ΣI ∪ {!,&&, ‖,==>,==, <,>,<=, >=}, NB = NI ∪ {Xbexpr}, SB = Xbexpr and the
following derivation rules:

PB = {Xbexpr → (Xbexpr)

Xbexpr → !Xbexpr

Xbexpr → Xbexpr&&Xbexpr|Xbexpr‖Xbexpr|Xbexpr==Xbexpr

Xbexpr → Xiexpr==Xiexpr|Xiexpr<Xiexpr|Xiexpr>Xiexpr|Xiexpr<=Xiexpr|Xiexpr=>Xiexpr

Xbexpr → Xvar

Xbexpr → true|false} ∪ PI

We propose that you use ΣBoo = ΣB ∪ {while, if, else, {, }, ;, :=} and re-use the gram-
mars for integer and boolean expressions.

Your language should have the following properties:

� There should be a while statement, an if-then-else statement and an assignment
statement.

� The concatenation of statements should be a statement.

� A program should be a statement.

� We do not need statements for declaring variables.

Exercise 3: Derivation Tree 1 Point
Give a derivation tree for the grammar GI and the word 15 + a + 4.

In the next part of the lecture, we will define the semantics of Boostan formally. For
this purpose, we will use the reflexive transitive closure of a relation. The exercises
below should make you familiar with that term.

Given a set X, a binary relation over X is a subset of the Cartesian product X ×X.
We call a binary relation R reflexive if for all x ∈ X the pair (x, x) is an element of
R. We call a binary relation R transitive if for all x, y, z ∈ X the following property
holds:

If (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

Exercise 4: Reflexivity and Transitivity 2 Points
State for each of the following relations if the relation is reflexive and if the relation is
transitive.

(a) The “strictly smaller” relation over integers, Ra = {(x, y) ∈ Z× Z | x < y}

(b) The relation winRPS over the set {Rock,Paper, Scissors}.
Rb = {(Rock, Scissors), (Scissors,Paper), (Paper,Rock)}

(c) Rc = {(x, y) ∈ Z× Z | (x− y) mod 42 = 0}

(d) Rd = {(x, y) ∈ Z× Z | (x− y) = 2 or (y − x) = 2}

2

Given a binary relation R over the set X, the reflexive transitive closure, denoted R∗,
is the smallest relation such that R ⊆ R∗, R∗ is reflexive and R∗ is transitive.
We note that in this context “smallest” means that there is no strict subset that
has the same properties and that this minimum is indeed unique since reflexive and
transitive relations are closed under intersection.

Exercise 5: Reflexive Transitive Closure 2 Points
Compute for each of the four relations above the reflexive transitive closure.

3

