In this exercise sheet we work on the soundness proof for use the Hoare proof system, and continue with some exercises on the theory of arrays.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Soundness of the Weakening Postcondition Rule
Prove that the weakening postcondition rule of the Hoare proof system displayed below is sound.

\[
\begin{align*}
\text{(weakpos)}: & \quad \{ \phi \} st \{ \psi \} \\
& \text{if } \psi \models \psi' \\
\end{align*}
\]

More precisely, prove the following lemma from the lecture:

If the Hoare triple \(\{ \phi \} st \{ \psi \} \) is valid and the side condition \(\psi \models \psi' \) is valid, then the Hoare triple \(\{ \phi \} st \{ \psi' \} \) is valid.

Exercise 2: Soundness of the Composition Rule
Prove that the composition rule of the Hoare proof system displayed below is sound.

\[
\begin{align*}
\text{(compo)}: & \quad \{ \phi_1 \} st_1 \{ \phi_2 \} \\
& \text{if } \phi_2 st_2 \{ \phi_3 \} \\
& \quad \{ \phi_1 \} st_1 st_2 \{ \phi_3 \} \\
\end{align*}
\]

More precisely, prove the following lemma from the lecture:

If the Hoare triple \(\{ \phi_1 \} st_1 \{ \phi_2 \} \) is valid and the Hoare triple \(\{ \phi_2 \} st_2 \{ \phi_3 \} \) is valid, then the Hoare triple \(\{ \phi_1 \} st_1 st_2 \{ \phi_3 \} \) is valid.

Exercise 3: Soundness of the Conditional Rule
Prove that the conditional rule of the Hoare proof system displayed below is sound.

\[
\begin{align*}
\text{(condi)}: & \quad \{ \phi \land expr \} st_1 \{ \psi \} \\
& \text{if } \phi \land \neg expr \ st_2 \{ \psi \} \\
& \quad \{ \phi \} \text{if}(expr)\{st1\} else \{st2\} \{ \psi \} \\
\end{align*}
\]

More precisely, prove the following lemma from the lecture:

If the Hoare triple \(\{ \phi \land expr \} st_1 \{ \psi \} \) is valid and the Hoare triple \(\{ \phi \land \neg expr \} st_2 \{ \psi \} \) is valid, then the Hoare triple \(\{ \phi \} \text{if}(expr)\{st1\} else \{st2\} \{ \psi \} \) is valid.
Exercise 4: Square

Find an inductive loop invariant for the while loop of the following program that is strong enough to prove that the program satisfies the given precondition-postcondition pair, i.e., the formulas after requires and ensures, respectively. Use Ultimate Referee[^1] to check your solution.

Alternatively you may also use your own solution to exercise 5 on exercise sheet 8.

```plaintext
procedure square(n: int) returns (res: int)
requires n >= 0;
ensures res == n*n;
{
  var i, odd : int;
  i := 0;
  odd := 1;
  res := 0;
  while (i < n) {
    res := res + odd;
    odd := odd + 2;
    i := i + 1;
  }
}
```

Exercise 5: Satisfiability in the Theory of Arrays

Determine which of the following FOL formulas is satisfiable in the theory of arrays. If a formula is satisfiable, give a satisfying assignment. You may assume that the arrays have integer indices and values.

(a) \(\text{select}(a, i) = i \land \text{store}(a, i, k) = a \land i \neq k \)

(b) \(a = \text{store}(b, k, v) \land \text{select}(a, i) \neq \text{select}(b, i) \land \text{select}(a, j) \neq \text{select}(b, j) \)

(c) \(b = \text{store}(a, k, v) \land \forall i. i \neq j \rightarrow \text{select}(a, i) = \text{select}(b, i) \)

You may use an SMT solver to solve this task. To declare an array constant \(a \), you can use the SMT-LIB command `(declare-fun a () (Array Int Int))`. The function applications for the `select` function and the `store` function are written as usual, e.g. `(select a i)` and `(store a i v)`.

Exercise 6: Theory of Arrays

Formalize the following statements as first order logic formulas.

(a) The array \(a \) has the value 0 at every index except at index 5, where the value is 23.

(b) The array \(a \) contains no duplicate values between the indices 0 and 10 inclusive.

[^1]: https://ultimate.informatik.uni-freiburg.de/?ui=int&tool=referee