
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on June 29, 2020
Discussion: June 29, 2020

Tutorial for Program Verification
Exercise Sheet 12

Exercise 1: Arrays and Havoc 2 Points
Consider a program P = (V, µ, T) whose set of variables contains three integer variables
i, j, x and an array variable a whose indices and values are integers. Use a formula over
primed and unprimed variables to write down the following relation.

[[if(a[i]>0){havoc a;} else {havoc x; a[j]:=x;}]]

Exercise 2: Minimum 2 Points
The following Boogie program iterates through a two-dimensional array and finds the
minimum value within the given bounds lo and hi.

procedure findmin(a : [int , int] int , lo : int , hi : int) returns (min : int)
requires lo <= hi;

ensures (forall i, j : int :: lo <= i && i <= hi && lo <= j && j <= hi

==> a[i, j] >= min);

{

var i, j : int;

i := lo;

min := a[lo, lo];

while (i <= hi) {

j := lo;

while (j <= hi) {

i f (a[i, j] < min) {

min := a[i, j];

}

j := j + 1;

}

i := i + 1;

}

}

Find inductive loop invariants for the two while loops of the program that are strong
enough to prove that the program satisfies the given precondition-postcondition pair (the
formulas after requires and ensures, respectively). You can use Ultimate Referee to
check your solution.

1

Exercise 3: Selection Sort 2 Points
The following boogie procedure implements the selection sort algorithm that sorts a given
array in ascending order.

procedure SelectionSort(lo : int , hi : int , a : [int] int) returns (ar : [int] int)
requires lo <= hi;

ensures (forall i1 , i2 : int :: lo <= i1 && i1 <= i2 && i2 <= hi

==> ar[i1] <= ar[i2]);

{

var i, k, min , tmp : int;
ar := a;

k := lo;

while (k <= hi) {

// Find the index of the minimal element between k and hi (inclusive)

min := k;

i := k + 1;

while (i <= hi) {

i f (ar[i] < ar[min]) { min := i; }

i := i + 1;

}

// Swap ar[k] and ar[min]

tmp := ar[k];

ar[k] := ar[min];

ar[min] := tmp;

k := k + 1;

}

}

Find inductive loop invariants for the two while loops that are strong enough to prove that
the program satisfies the given precondition-postcondition pair. You can use Ultimate
Referee to check your solution.

2

