
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on July 06, 2020
Discussion: July 06, 2020

Tutorial for Program Verification
Exercise Sheet 14

In this exercise sheet we work with the Hoare proof system, control flow graphs, and
reachability graphs.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Alternative Assume Axiom 2 Points

In the lecture, we introduced the following axiom for the assume statement in the Hoare
proof system:

{ϕ} assume expr; {ϕ ∧ expr} (assu)

Alternatively, we could have introduced the following axiom:

{expr → ψ} assume expr; {ψ} (assu′)

In this exercise we will show that both rules are equivalent.

(a) Give a proof for the Hoare triple {expr → ψ} assume expr; {ψ} (for an arbitrary
formula ψ) using the Hoare proof system.

(b) Give a proof of the Hoare triple {ϕ} assume expr; {ϕ ∧ expr} for an arbitrary
formula ϕ. Use a modified variant of the Hoare proof system, where the rule (assu)
has been replaced by the rule (assu′).

Exercise 2: From Programs to CFGs 2 Points
For each of the programs given below, draw a control-flow graph.

(a) Code of program Ppow:

1 e := 1;

2 z := 0;

3 while (z < y) {

4 e := e * x;

5 z := z + 1;

6 }

1



(b) Code of program Pfindmin:

1 i := lo;

2 min := a[lo, lo];

3 while (i <= hi) {

4 j := lo;

5 while (j <= hi) {

6 i f (a[i, j] < min) {

7 min := a[i, j];

8 }

9 j := j + 1;

10 }

11 i := i + 1;

12 }

Exercise 3: Program Configurations 2 Points
Consider the program P = (V, µ, T ) with V = {x, y}, µ(x) = µ(y) = {true, false} and
T a derivation tree for the statement below on the left. On the right, a CFG for P is
shown.

1 while (x == y) {

2 y := x;

3 havoc x;

4 }

`1

`2

`3

`4

(x==y)

y := x

havoc x

!(x==y)

Draw the reachability graph for this control-flow graph and the precondition-postcondition-
pair (x, x→ ¬y).

Exercise 4: Existence of Program Executions 2 Points
Prove the following lemma from the lecture slides.

Lemma (RelAndExec.2) Let G = (Loc,∆, `init, `ex) be a control-flow graph for the
sequential composition st1st2. There exists a program execution (`0, s0), . . . , (`n, sn)
with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[st1st2]].

2


