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In this exercise sheet we work with the Hoare proof system, control flow graphs, and
reachability graphs.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Alternative Assume Axiom 2 Points

In the lecture, we introduced the following axiom for the assume statement in the Hoare
proof system:

{ϕ} assume expr; {ϕ ∧ expr} (assu)

Alternatively, we could have introduced the following axiom:

{expr → ψ} assume expr; {ψ} (assu′)

In this exercise we will show that both rules are equivalent.

(a) Give a proof for the Hoare triple {expr → ψ} assume expr; {ψ} (for an arbitrary
formula ψ) using the Hoare proof system.

(b) Give a proof of the Hoare triple {ϕ} assume expr; {ϕ ∧ expr} for an arbitrary
formula ϕ. Use a modified variant of the Hoare proof system, where the rule (assu)
has been replaced by the rule (assu′).

Exercise 2: From Programs to CFGs 2 Points
For each of the programs given below, draw a control-flow graph.

(a) Code of program Ppow:

1 e := 1;

2 z := 0;

3 while (z < y) {

4 e := e * x;

5 z := z + 1;

6 }
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(b) Code of program Pfindmin:

1 i := lo;

2 min := a[lo, lo];

3 while (i <= hi) {

4 j := lo;

5 while (j <= hi) {

6 i f (a[i, j] < min) {

7 min := a[i, j];

8 }

9 j := j + 1;

10 }

11 i := i + 1;

12 }

Exercise 3: Program Configurations 2 Points
Consider the program P = (V, µ, T ) with V = {x, y}, µ(x) = µ(y) = {true, false} and
T a derivation tree for the statement below on the left. On the right, a CFG for P is
shown.

1 while (x == y) {

2 y := x;

3 havoc x;

4 }
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`2

`3

`4

(x==y)

y := x

havoc x

!(x==y)

Draw the reachability graph for this control-flow graph and the precondition-postcondition-
pair (x, x→ ¬y).

Exercise 4: Existence of Program Executions 2 Points
Prove the following lemma from the lecture slides.

Lemma (RelAndExec.2) Let G = (Loc,∆, `init, `ex) be a control-flow graph for the
sequential composition st1st2. There exists a program execution (`0, s0), . . . , (`n, sn)
with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[st1st2]].
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