In this exercise sheet, we work with the strongest postcondition sp and its dual, the
weakest precondition wp. These functions are also known as predicate transformers.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Strongest Postcondition for the Conditional Statement 2 Points
In the lecture we have seen that the strongest postcondition of a sequential composition
or a while-loop can be expressed in terms of the strongest postconditions of the subst-
ations. In this exercise, you should give a similar formulation for the strongest
postcondition of an conditional statement.

Specifically, let st be the statement $\text{if (expr) \{ st_1 \} else \{ st_2 \}}$. Let $S \subseteq S_{V_{\mu}}$ be a
set of states. Express the strongest postcondition $sp(S, st)$ using only the strongest
postcondition of st_1, st_2 and of simple statements (havoc, assignments or assume) for
suitable sets of states.

You do not have to prove the correctness of your result.

Exercise 2: Distributivity of sp 4 Points
In this exercise we examine distributivity properties of the strongest postcondition. Let
S, S_1, S_2 be arbitrary sets of states, and let st be a statement. Furthermore, let φ_1 and
φ_2 be formulas.

For each of the following equalities, either prove its correctness or give a counterexample.

(a) $sp(S_1 \cup S_2, st) = sp(S_1, st) \cup sp(S_2, st)$
(b) $sp(S_1 \cap S_2, st) = sp(S_1, st) \cap sp(S_2, st)$
(c) $sp(S, \text{assume } \varphi_1 \lor \varphi_2) = sp(S, \text{assume } \varphi_1) \cup sp(S, \text{assume } \varphi_2)$
(d) $sp(S, \text{assume } \varphi_1 \land \varphi_2) = sp(S, \text{assume } \varphi_1) \cap sp(S, \text{assume } \varphi_2)$

Exercise 3: Strongest Postcondition 2 Points
Consider the following program P.

```
1 assume x > y;
2 x := x - y;
3 havoc z;
4 assume z > 0;
5 x := x * z;
```

Compute the strongest postcondition $sp(S, P)$ where S is $\{ y > 0 \}$.
Exercise 4: Weakest Precondition

Analogously to the strongest postcondition we define the weakest precondition for a given set of states and a given statement st as follows.

$$wp(S, st) = \{ s \in S_{\forall \mu} \mid \text{forall } s' \in S_{\forall \mu} \ (s, s') \in [st] \implies s' \in S \}$$

Intuitively, the weakest precondition is the set of states such that if we can execute st and st terminates then we are in some state of S.

Let us assume that the set S is given by a formula ψ, i.e., $S = \{ \psi \}$. Give a formula φ such that $wp(S, st) = \{ \varphi \}$ for the cases where

(a) st is an assignment statement of the form $x := \text{expr}$,
(b) st is an assume statement of the form assume expr, and
(c) st is a havoc statement of the form $\text{havoc } x$.
