
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 10:00 on July 27, 2020
Discussion: July 27, 2020

Tutorial for Program Verification
Exercise Sheet 20

In this exercise sheet we work with the automated verification techniques CEGAR
(Predicate Abstraction) and Trace Abstraction. We conclude with a preparation

exercise for next week’s lecture on termination.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: 5 Points
Apply the CEGAR approach to the program below. Whenever you have to provide a
sequence of statements you may return any sequence, but we encourage you to take the
shortest sequence. Document all intermediate steps.

Hint: If you choose the abstraction of traces wisely, then two iteration steps are sufficient.

1 x := 0;

2 while (x <= 100) {

3 y := true;

4 x := x + 1;

5 }

6 assert y == true;

`2 `3 `4

`5`6`7

`8

x:=0 x<=100

y:=truex:=x+1!(x<=100)

y==true

!(y==true)

Exercise 2: Abstraction of a Trace 2 Points
In the lecture we defined an abstraction π# of a trace π, derived by replacing some
of the statements st with their abstract counterpart abstract(st). The intuition is that
sometimes a few statements in π are sufficient to make it infeasible. A proof of infeasibility
of π# is then also a proof of infeasiblity of π.

In this exercise, we consider a modified concept of abstraction: Instead of replacing
assignments with their abstraction (havoc), we delete them from the trace entirely.

Show that this is not a good notion of abstraction. In particular, give a trace π and a
corresponding abstraction π#, such that π# is infeasible, but π is feasible. Give a proof
of infeasibility for π#, and an execution for π.

1



Exercise 3: Trace Abstraction 3 Points
Consider the following control-flow graph for a program P , and let AP be the corre-
sponding automaton. In this task, you should apply trace abstraction to prove that the
program P is safe.

`1

`2

`3 `4

`5`6

`7`8 `err

z := 0

x := y

w == 17

x := x + 1

z := 1

w != 17

x == y

z != 1 z == 1

x != y

Give two error traces π1 and π2 and construct corresponding Floyd-Hoare automata A1

and A2 such that the inclusion L(AP ) ⊆ L(A1) ∪ L(A2) holds.

Exercise 4: Well-Founded Relations 3 Points
For the purpose of termination analysis, we will need the notion of a well-founded relation.
In this exercise, we will introduce the definition and apply it to a few relations.

In the chapter on termination analysis we will work with infinite sequences. Analogously
to a sequence of length n, which can be seen as a map whose domain is {0, . . . n− 1}, an
infinite sequence can be seen as a map whose domain are all natural numbers.

Definition (Well-Founded Relation) Let X be a set. We call a binary relation
R ⊆ X×X well-founded if there is no infinite sequence x1, x2, . . . such that (xi, xi+1) ∈
R for all i ∈ N.

For each of the following relations, state if it is well-founded or not. If it is not, give an
infinite sequence as a counterexample.

(a) Ra = { (x, x′) ∈ {true, false}2 | x = x′ }

(b) Rb = { (x, x′) ∈ N2 | x > x′ }

(c) Rc = { (x, x′) ∈ Z2 | x > x′ }

(d) Rd = { (x, x′) ∈ Q2 | x ≥ 0 and x′ ≥ 0 and x > x′ }

(e) Re = {
(
(x, y), (x′, y′)

)
∈ (N2)2 | x > x′ or (x = x′ and y > y′) }

(f) Rf = {
(
(x, y), (x′, y′)

)
∈ (Z2)2 | x′ = 3 · x and y′ = 2 · y and x ≥ 2 and y ≥ 2}

2


