

Dr. Matthias Heizmann Dominik Klumpp Hand in until 10:00 on July 27, 2020 Discussion: July 27, 2020

Tutorial for Program Verification Exercise Sheet 20

In this exercise sheet we work with the automated verification techniques CEGAR (Predicate Abstraction) and Trace Abstraction. We conclude with a preparation exercise for next week's lecture on termination.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1:

5 Points

Apply the CEGAR approach to the program below. Whenever you have to provide a sequence of statements you may return any sequence, but we encourage you to take the shortest sequence. Document all intermediate steps.

Hint: If you choose the abstraction of traces wisely, then two iteration steps are sufficient.

Exercise 2: Abstraction of a Trace

2 Points

In the lecture we defined an *abstraction* $\pi^{\#}$ of a trace π , derived by replacing some of the statements st with their abstract counterpart abstract(st). The intuition is that sometimes a few statements in π are sufficient to make it infeasible. A proof of infeasibility of $\pi^{\#}$ is then also a proof of infeasibility of π .

In this exercise, we consider a modified concept of abstraction: Instead of replacing assignments with their abstraction (havoc), we delete them from the trace entirely.

Show that this is not a good notion of abstraction. In particular, give a trace π and a corresponding abstraction $\pi^{\#}$, such that $\pi^{\#}$ is infeasible, but π is feasible. Give a proof of infeasibility for $\pi^{\#}$, and an execution for π .

Exercise 3: Trace Abstraction

3 Points

Consider the following control-flow graph for a program P, and let \mathcal{A}_P be the corresponding automaton. In this task, you should apply trace abstraction to prove that the program P is safe.

Give two error traces π_1 and π_2 and construct corresponding Floyd-Hoare automata \mathcal{A}_1 and \mathcal{A}_2 such that the inclusion $L(\mathcal{A}_P) \subseteq L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$ holds.

Exercise 4: Well-Founded Relations

3 Points

For the purpose of termination analysis, we will need the notion of a *well-founded* relation. In this exercise, we will introduce the definition and apply it to a few relations.

In the chapter on termination analysis we will work with *infinite sequences*. Analogously to a sequence of length n, which can be seen as a map whose domain is $\{0, \ldots, n-1\}$, an infinite sequence can be seen as a map whose domain are all natural numbers.

Definition (Well-Founded Relation) Let X be a set. We call a binary relation $R \subseteq X \times X$ well-founded if there is no infinite sequence x_1, x_2, \ldots such that $(x_i, x_{i+1}) \in R$ for all $i \in \mathbb{N}$.

For each of the following relations, state if it is well-founded or not. If it is not, give an infinite sequence as a counterexample.

- (a) $R_a = \{ (x, x') \in \{ true, false \}^2 \mid x = x' \}$
- (b) $R_b = \{ (x, x') \in \mathbb{N}^2 \mid x > x' \}$
- (c) $R_c = \{ (x, x') \in \mathbb{Z}^2 \mid x > x' \}$
- (d) $R_d = \{ (x, x') \in \mathbb{Q}^2 \mid x \ge 0 \text{ and } x' \ge 0 \text{ and } x > x' \}$
- (e) $R_e = \{ ((x, y), (x', y')) \in (\mathbb{N}^2)^2 \mid x > x' \text{ or } (x = x' \text{ and } y > y') \}$
- (f) $R_f = \{ ((x, y), (x', y')) \in (\mathbb{Z}^2)^2 \mid x' = 3 \cdot x \text{ and } y' = 2 \cdot y \text{ and } x \ge 2 \text{ and } y \ge 2 \}$