Tutorial for Program Verification Exercise Sheet 21

In this exercise sheet we work with termination and ranking functions.
Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Termination

2 Bonus Points
In the lecture, we discussed different properties of programs. Besides our definition of termination, we here give formal definitions of three other propertes. In each case, we consider a program P with a $\mathrm{CFG}\left(L o c, \Delta, \ell_{\text {init }}, \ell_{\text {ex }}\right)$.
(a) We say that P can reach the exit location if there exists a finite execution, such that the first configuration (ℓ, s) is initial, and the last configuration is $\left(\ell_{\mathrm{ex}}, s^{\prime}\right)$ for some state s^{\prime}.
(b) We say that P can stop if there exists a reachable configuration (ℓ, s) such that there exists no configuration $\left(\ell^{\prime}, s^{\prime}\right)$ and statement st with $\left(\ell, s t, \ell^{\prime}\right) \in \Delta$ and $\left(s, s^{\prime}\right) \in \llbracket s t \rrbracket$.
(c) We say that P always reaches the exit location if there exist no infinite executions, and all finite executions end in a configuration ($\ell^{\prime}, s^{\prime}$) where we either have a successor (i.e., there exists a configuration $\left(\ell^{\prime \prime}, s^{\prime \prime}\right)$ and statement st with $\left(\ell^{\prime}, s t, \ell^{\prime \prime}\right) \in \Delta$ and $\left.\left(s^{\prime}, s^{\prime \prime}\right) \in \llbracket s t \rrbracket\right)$ or we have that ℓ^{\prime} is $\ell_{\text {ex }}$.
(d) We say that P always stops (resp. P terminates) if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In particular, for each of the following pairs, give a program such that one definition holds but the other does not. Explain which of the definitions holds and why.
(a) P can reach the exit location vs. P can stop
(b) P can stop vs. P always stops

Exercise 2: Ranking Functions

5 Points
For each of the following programs, state whether it (always) terminates or not. If it terminates, give a ranking function for each loop in the program. If it may not terminate, give an infinite execution of the program.

```
while (x > 0) {
    while (y > 0) {
        y := y-1;
    }
    x := x-1;
    havoc y;
9}
```

Listing 1: Program P_{1}

```
while (x > 0) {
    if (y>0) {
        y := y-1;
    } else {
        x := x-1;
        havoc y;
    }
}
```

Listing 2: Program P_{2}

```
while (x > 0) {
    if (y > 0) {
        y := y-1;
        havoc x;
    } else {
        x := x-1;
        havoc y;
    }
9 }
```

Listing 3: Program P_{3}

Hint: For simple loops is often convenient to use a function whose range is \mathbb{N} and the strictly greater than relation $>$ on natural numbers. For more complex loops, this is sometimes not sufficient but we can use instead a function $f: S_{V, \mu} \rightarrow \mathbb{N} \times \ldots \times \mathbb{N}$ whose range are n-tuples of natural numbers and the lexicographic order $>_{\text {lex }}$ that we define as follows.
$\left(m_{1}, \ldots, m_{n}\right)>_{\operatorname{lex}}\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ iff there exists $i \in\{1, \ldots n\}$ such that $m_{i}>m_{i}^{\prime}$ and for all $k \in\{1, \ldots i-1\}$ the equality $m_{k}=m_{k}^{\prime}$ holds

If a function with that signature together with the order $>_{\text {lex }}$ is a ranking function, it is often called a lexicographic ranking function.

