

Dr. Matthias Heizmann Dominik Klumpp

Tutorial for Program Verification Exercise Sheet 21

In this exercise sheet we work with termination and ranking functions.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Termination

2 Bonus Points

In the lecture, we discussed different properties of programs. Besides our definition of termination, we here give formal definitions of three other propertes. In each case, we consider a program P with a CFG ($Loc, \Delta, \ell_{init}, \ell_{ex}$).

- (a) We say that P can reach the exit location if there exists a finite execution, such that the first configuration (ℓ, s) is initial, and the last configuration is (ℓ_{ex}, s') for some state s'.
- (b) We say that P can stop if there exists a reachable configuration (ℓ, s) such that there exists no configuration (ℓ', s') and statement st with $(\ell, st, \ell') \in \Delta$ and $(s, s') \in [st]$.
- (c) We say that *P* always reaches the exit location if there exist no infinite executions, and all finite executions end in a configuration (ℓ', s') where we either have a successor (i.e., there exists a configuration (ℓ'', s'') and statement st with $(\ell', st, \ell'') \in \Delta$ and $(s', s'') \in [st]$) or we have that ℓ' is ℓ_{ex} .
- (d) We say that *P* always stops (resp. *P* terminates) if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In particular, for each of the following pairs, give a program such that one definition holds but the other does not. Explain which of the definitions holds and why.

- (a) P can reach the exit location vs. P can stop
- (b) *P* can stop **vs.** *P* always stops

Exercise 2: Ranking Functions

5 Points

For each of the following programs, state whether it (always) terminates or not. If it terminates, give a ranking function for each loop in the program. If it may not terminate, give an infinite execution of the program.

1 while (x > 0) { 2 while (y > 0) {	1 while (x > 0) { 2 if (y > 0) {	1 while (x > 0) { 2 if (y > 0) {
3 y := y-1;	3 y := y-1;	3 y := y-1;
4	4	4 havoc x;
5 }	5 } else {	5 } else {
6 x := x-1;	6 x := $x - 1$;	6 x := $x - 1$;
7 havoc y;	7 havoc y;	7 havoc y;
8	8 }	8 }
9 }	9 }	9 }

Listing 1: Program P_1

Listing 2: Program P_2

Listing 3: Program P_3

Hint: For simple loops is often convenient to use a function whose range is \mathbb{N} and the strictly greater than relation > on natural numbers. For more complex loops, this is sometimes not sufficient but we can use instead a function $f: S_{V,\mu} \to \mathbb{N} \times \ldots \times \mathbb{N}$ whose range are *n*-tuples of natural numbers and the *lexicographic order* >_{lex} that we define as follows.

 $(m_1, \ldots, m_n) >_{\mathsf{lex}} (m'_1, \ldots, m'_n)$ iff there exists $i \in \{1, \ldots, n\}$ such that $m_i > m'_i$ and for all $k \in \{1, \ldots, i-1\}$ the equality $m_k = m'_k$ holds

If a function with that signature together with the order $>_{lex}$ is a ranking function, it is often called a *lexicographic ranking function*.