Tutorial for Program Verification
Exercise Sheet 21

In this exercise sheet we work with termination and ranking functions.
Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: Termination
2 Bonus Points

In the lecture, we discussed different properties of programs. Besides our definition of termination, we here give formal definitions of three other properties. In each case, we consider a program P with a CFG $(\text{Loc}, \Delta, \ell_{\text{init}}, \ell_{\text{ex}})$.

(a) We say that P can reach the exit location if there exists a finite execution, such that the first configuration (ℓ, s) is initial, and the last configuration is (ℓ_{ex}, s') for some state s'.

(b) We say that P can stop if there exists a reachable configuration (ℓ, s) such that there exists no configuration (ℓ', s') and statement st with $(\ell, st, \ell') \in \Delta$ and $(s, s') \in [st]$.

(c) We say that P always reaches the exit location if there exist no infinite executions, and all finite executions end in a configuration (ℓ', s') where we either have a successor (i.e., there exists a configuration (ℓ'', s'') and statement st with $(\ell', st, \ell'') \in \Delta$ and $(s', s'') \in [st]$) or we have that ℓ' is ℓ_{ex}.

(d) We say that P always stops (resp. P terminates) if there exist no infinite executions.

In this exercise, you should give programs that differentiate between these definitions. In particular, for each of the following pairs, give a program such that one definition holds but the other does not. Explain which of the definitions holds and why.

(a) P can reach the exit location vs. P can stop

(b) P can stop vs. P always stops

Exercise 2: Ranking Functions
5 Points

For each of the following programs, state whether it (always) terminates or not. If it terminates, give a ranking function for each loop in the program. If it may not terminate, give an infinite execution of the program.
1	while (x > 0) {	2	while (x > 0) {	3	while (x > 0) {		
2	while (y > 0) {	4	if (y > 0) {	5	if (y > 0) {	6	if (y > 0) {
3	y := y - 1;	4	y := y - 1;	5	y := y - 1;	6	y := y - 1;
4	} else {	5	} else {	6	} else {	7	} else {
5	x := x - 1;	6	x := x - 1;	7	x := x - 1;	8	x := x - 1;
6	havoc y;	7	havoc y;	8	havoc y;	9	havoc y;
7	}	8	}	9	}		

Listing 1: Program P₁
Listing 2: Program P₂
Listing 3: Program P₃

Hint: For simple loops is often convenient to use a function whose range is \(\mathbb{N} \) and the strictly greater than relation \(> \) on natural numbers. For more complex loops, this is sometimes not sufficient but we can use instead a function \(f : S_{\mathbb{V},\mu} \to \mathbb{N} \times \ldots \times \mathbb{N} \) whose range are \(n \)-tuples of natural numbers and the *lexicographic order* \(>_{\text{lex}} \) that we define as follows.

\[(m_1, \ldots, m_n) >_{\text{lex}} (m'_1, \ldots, m'_n) \text{ iff there exists } i \in \{1, \ldots n\} \text{ such that } m_i > m'_i \]

and for all \(k \in \{1, \ldots i - 1\} \) the equality \(m_k = m'_k \) holds

If a function with that signature together with the order \(>_{\text{lex}} \) is a ranking function, it is often called a *lexicographic ranking function*.