
Program Verification

Matthias Heizmann

Summer Term 2021

Matthias Heizmann Program Verification Summer Term 2021 1 / 507

Program Verification
Summer Term 2021

Lecture 1: Introduction

Matthias Heizmann

19th April

Matthias Heizmann Program Verification Summer Term 2021 2 / 507

Section 1

Introduction

Matthias Heizmann Program Verification Summer Term 2021 3 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 4 / 507

Outline of the Section on Introduction

Some Motivation
Program Verifier
Motivation
Challenges
Content of this Course

Matthias Heizmann Program Verification Summer Term 2021 5 / 507

Is this program correct?

1 int *computeSquares(unsigned int n) {

2 int a[n];

3 int i = 0;

4 while(i <= n) {

5 a[i] = i*i;

6 i++;

7 }

8 return a;

9 }

I Quick answer: No. Program does one iteration too much, array accessed beyond its
bounds in the last iteration. Typical bug.

I Well-considered answer: Maybe. What is the definition of “correctness”? What is the
programming language?

Matthias Heizmann Program Verification Summer Term 2021 6 / 507

Computers are very good in detecting synax errors. (Here, Eclipse complains about a

missing semicolon). Is would be great if tools could also underline bugs that we have seen

before.

Matthias Heizmann Program Verification Summer Term 2021 7 / 507

Is this program correct?

1 var year , days : int;

2

3 procedure main()

4 modifies year , days;

5 {

6 var leapYear : bool;

7 assume year >= 1980;

8 assume days >= 0 && days <= 366;

9 while (days > 365) {

10 call leapYear := isLeapYear(year);

11 if (leapYear) {

12 if (days > 366) {

13 days := days - 366;

14 year := year + 1;

15 }

16 } else {

17 days := days - 365;

18 year := year + 1;

19 }

20 }

21 }

Code similar to the code that caused the bug in Microsoft’s Zune player.

Matthias Heizmann Program Verification Summer Term 2021 8 / 507

I Program Verification

I Motivation

I Challenges

I Course outline

Matthias Heizmann Program Verification Summer Term 2021 9 / 507

-+

Matthias Heizmann Program Verification Summer Term 2021 10 / 507

Outline of the Section on Introduction

Some Motivation
Program Verifier
Motivation
Challenges
Content of this Course

Matthias Heizmann Program Verification Summer Term 2021 10 / 507

Program Verifier

program

specification

program
verifier

XXX yes
program satisfies

specification

××× no
program violates

specification

Typical specifications:
I No division by zero
I Array only accessed within its bounds
I Termination
I Memory safety
I No assert statement is violated

Matthias Heizmann Program Verification Summer Term 2021 11 / 507

Ultimate Automizer

Ultimate

https://ultimate.informatik.uni-freiburg.de/automizer/

I According to the international competition on software verification
SV-COMP 1 one of the best verification tools.

I Mainly developed by our group 2 at the University of Freiburg. Many
student projects and theses improved the tool.

I Source code available at GitHub 3.

1
SV-COMP sv-comp.sosy-lab.org/

2
Group of Andreas Podelski https://swt.informatik.uni-freiburg.de/

3
The Ultimate Framework https://github.com/ultimate-pa/ultimate/

Matthias Heizmann Program Verification Summer Term 2021 12 / 507

https://ultimate.informatik.uni-freiburg.de/automizer/
sv-comp.sosy-lab.org/
https://swt.informatik.uni-freiburg.de/
https://github.com/ultimate-pa/ultimate/

Ultimate Automizer

Some program writte in the C language. 4 A specification written in ACSL 5 is
given by assert statement in line 6.

1 unsigned int foo(unsigned int x, unsigned int y) {

2 if (x < 1000 || y < 1000) {

3 return 1000;

4 }

5 unsigned int z = x + y;

6 //@ assert z >= 1000;

7 return z;

8 }

I Naive proposition: The program satisfies the specification.

I Naive justification: If we add two large numbers the result is a large number.

Ultimate Automizer rightly disagrees: Since the type of x and y is unsigned int

the value of z is 0 if y was 4294966296 and z was 0. (If we follow the ISO C11

standard6 and assume that an unsigned int can store values from 0 to 4294967295.)
4
https://en.wikipedia.org/wiki/C_(programming_language)

5
https://en.wikipedia.org/wiki/ANSI/ISO_C_Specification_Language

6
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

Matthias Heizmann Program Verification Summer Term 2021 13 / 507

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/ANSI/ISO_C_Specification_Language
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

Ultimate Automizer

Let’s try to fix the program as follows.

1 unsigned long foo(unsigned int x, unsigned int y) {

2 if (x < 1000 || y < 1000) {

3 return 1000;

4 }

5 unsigned long z = x + y;

6 //@ assert z >= 1000;

7 return z;

8 }

I Naive proposition: Now, the program satisfies the specification.

I Naive justification: The range of values of z is now large enough.

Ultimate Automizer rightly disagrees: The type of the expression x+y is still

unsigned int and hence the preceding couterexample applies again.

Matthias Heizmann Program Verification Summer Term 2021 14 / 507

Ultimate Automizer

Let’s finally fix the program as follows.

1 unsigned long foo(unsigned int x, unsigned int y) {

2 if (x < 1000 || y < 1000) {

3 return 1000;

4 }

5 unsigned long z = (long) x + y;

6 //@ assert z >= 1000;

7 return z;

8 }

Ultimate Automizer confirms that the program satisfies its specification.

Matthias Heizmann Program Verification Summer Term 2021 15 / 507

Outline of the Section on Introduction

Some Motivation
Program Verifier
Motivation
Challenges
Content of this Course

Matthias Heizmann Program Verification Summer Term 2021 16 / 507

Motivation

I More and more devices in our lives are controlled by software.

I Software usually has bugs.

I Some bugs make the software directly disfunctional, some bugs affect
security and are exploited secretly

I Software is getting more and more complex.

I Higher complexity, more bugs.

Matthias Heizmann Program Verification Summer Term 2021 17 / 507

Testing is not Always Sufficient

1 int foo(int x, int y) {

2 return y / (myHash(x) -23);

3 }

Unless we test all inputs, we cannot use testing to prove correctness.

Matthias Heizmann Program Verification Summer Term 2021 18 / 507

Motivation

I Find more software bugs

I Get mathematical proof of correctness

I Speed up software development

Matthias Heizmann Program Verification Summer Term 2021 19 / 507

Outline of the Section on Introduction

Some Motivation
Program Verifier
Motivation
Challenges
Content of this Course

Matthias Heizmann Program Verification Summer Term 2021 20 / 507

Challenge 1: Undecidability

The program verification problem is undecidable.

Do not try to develop algorithms that solve the problem for all programs.

Algorithms that solve the problem for some programs are also helpful.

Matthias Heizmann Program Verification Summer Term 2021 21 / 507

Challenge 2: Ambiguities

Example: What are the values of x and y?

x := -7 / 5;

y := -7 % 5;

x y makes sense because

C/C++ -1 -2 (−1) · 5 + (−2) = 7
Python -2 3 (−2) · 5 + 3 = 7

Javascript -1.4 -2 (−1.4) · 5 = 7

Use mathematical logic to give programming languages a precise semantics.

In this course: We develop a small programming language whose semantics
can be defined in a couple of slides.

Matthias Heizmann Program Verification Summer Term 2021 22 / 507

Challenge 3: Correctness Proofs are Hard to Find

1 int main(void) {

2 unsigned int x = 1;

3 unsigned int y = 1;

4 while (1) {

5 if (user_input ()) {

6 x = 3 * x;

7 y = -2 * y + 1;

8 } else {

9 unsigned int tmp = x;

10 x = y;

11 y = tmp;

12 }

13 //@ assert y != 4;

14 }

15 return 0;

16 }

x = 1
y = 1

x = 3
y = 4294967295

x = 1
y = 1

x = 9
y = 4294967295

x = 4294967295
y = 3 x = 3

y = 4294967295

x = 1
y = 1

if else

if
else

if
else

We cannot track all executions.

Simple argument for correctness:
The values of x and y are always odd.

Matthias Heizmann Program Verification Summer Term 2021 23 / 507

Outline of the Section on Introduction

Some Motivation
Program Verifier
Motivation
Challenges
Content of this Course

Matthias Heizmann Program Verification Summer Term 2021 24 / 507

Content of this Course

I Mathematical logic
Propositional logic, First-order logic, SMT-LIB

I Boostan
A small programming with a precisely defined semantics

I Hoare proof system
A proof system for programs

I Algorithms for program verification
Develop algorithms that analyze if a program satisfies a specification

Matthias Heizmann Program Verification Summer Term 2021 25 / 507

Program Verification
Summer Term 2021

Lecture 2: Propositional Logic

Matthias Heizmann

Wednesday 21st April

Matthias Heizmann Program Verification Summer Term 2021 26 / 507

Section 2

Propositional Logic

Matthias Heizmann Program Verification Summer Term 2021 27 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 28 / 507

We presume that all of you know propositional logic.
Propositional logic is one of the basic concepts in computer science, it has applications in
many areas but there exist several terminology and several notations.

Goals of this section are

I recall the basic ideas of propositional logic

I fix the notation and terminology that we use in this lecture

I ease the presentation of first order logic (next section)

I introduce the idea of a proof system

Matthias Heizmann Program Verification Summer Term 2021 29 / 507

Syntax of Propositional Logic

Definition

Let VPL be a nonempty set whose elements we call propositional logical
variables. We define propositional logic (PL) formulas inductively as
follows.

1. false is a PL formula.

2. For each X ∈ VPL, X is a PL formula.

3. If F is a PL formula, then ¬F is a PL formula.

4. If F1 and F2 are PL formulas, then (F1 ∧ F2) is a PL formula.

Abbreviations

true := ¬false
F1 ∨ F2 := ¬(¬F1 ∧ ¬F2)
F1 → F2 := (¬F1 ∨ F2)
F1 ↔ F2 := (F1 → F2) ∧ (F2 → F1)

Matthias Heizmann Program Verification Summer Term 2021 30 / 507

Terminology

We call true, false atoms.
If X ∈ VPL, we call X an atom.
If F is an atom, we call F and ¬F a literal.
We call the symbols ¬,∧,∨,→,↔ logical connectives.

Notation

We may omit parentheses.

I Use the following order of precedence for logical connectives:
¬,∧,∨,→,↔

I Use the convention that binary operators are right-associative.

Right-associativity means e.g. that F1 → F2 → F3 is F1 → (F2 → F3) .

Matthias Heizmann Program Verification Summer Term 2021 31 / 507

Semantics

We call true and false truth values and we call a mapping ρ : VPL → {true, false} a variable
assignment.

Definition
The evaluation is a mapping [[·]] that takes a PL formula F and a variable assignment ρ, and
returns a truth value. It is defined as follows.

1. [[false]]ρ is false.

2. For each X ∈ VPL, [[X]]ρ is ρ(X).

3. [[¬F]]ρ is

{
true if [[F]]ρ is false

false if [[F]]ρ is true.

4. [[F1 ∧ F2]]ρ is

{
true if [[F1]]ρ is true and [[F2]]ρ is true

false otherwise.

Definition
1. We call a PL formula F satisfiable if there is a variable assignment ρ such that [[F]]ρ is

true.

2. We call a PL formula F valid if for all variable assignments ρ the evaluation [[F]]ρ is true.

Matthias Heizmann Program Verification Summer Term 2021 32 / 507

Examples: Satisfiability and Validity

Which of the following formulas is satisfiable, which is valid?

I F1 : P ∧ Q
satisfiable, not valid

I F2 : ¬(P ∧ Q)
satisfiable, not valid

I F3 : P ∨ ¬P
satisfiable, valid

I F4 : ¬(P ∨ ¬P)
unsatisfiable, not valid

I F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid (see next slides)

Is there a formula that is unsatisfiable and valid?

Matthias Heizmann Program Verification Summer Term 2021 33 / 507

Truth tables
Functions that have finite domain are sometimes visualized or defined
via a table. The truth table is a table that visualizes the evaluation
mapping [[·]] for a given formula F , i.e., the input is a variable
assignment, the output is a truth value. In the truth table (an example
is depicted on the next slides), every column is assigned to some
subformula of F . The columns are partitioned into two parts. On the
left hand side, there is one column for each propositional variable, on
the right hand side there is a column for F and sometimes there are
also columns for subformulas of F . A row of the table represents one
variable assignment. The rows for subformulas can help to compute the
entries for the formula F .

Matthias Heizmann Program Verification Summer Term 2021 34 / 507

Truth Table: Example

Truth table for the formula F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q

P Q (P → Q) (P ∨ Q) ¬Q F5

false false true false true false
true false false true true false
false true true true false false
true true true true false false

We conclude that F5 is neither satisfiable nor valid.

Matthias Heizmann Program Verification Summer Term 2021 35 / 507

Truth Tables: Limited Applicability
Unfortunately, the applicability of truth tables is rather limited. A
truth table has one row per variable assignment, and there are 2n

variable assignments for n variables.
Deciding satisfiability of a PL formula is an NP-complete problem.
However, there are many algorithms that work well in practice and
that are known to be polynomial on relevant subclasses of PL formulas.
Some of these algorithms are discussed in other lectures, e.g., Decision
Procedures, and we do not want to discuss the problem in this lecture.

Matthias Heizmann Program Verification Summer Term 2021 36 / 507

Excursus: Using SMT Solvers for SAT Problem

SAT solver propositional logic

SMT solver first order logic modulo theories

Example:
(P → Q) ∧ (P ∨ Q)

Matthias Heizmann Program Verification Summer Term 2021 37 / 507

Tools for checking satisfiability of PL formulas
Finding satisfying assignments for PL formulas can be a time-consuming task. In practice,
we use tools to solve this task. Tools that are specialized in finding satisfying assignments
for PL formulas are called SAT solvers.
Later in this lecture, we will use tools that are called SMT solvers. Every SMT solver is
also able to find satisfying assignments for PL formulas, but SMT solvers are typically not
highly optimized for this task. Since performance is not an issue for us, we will not learn
how to use a SAT solver and start to use SMT solvers right now.
Users communicate with an SMT solver via so-called SMT scripts. An SMT script is a file
that contains a list of commands. In order to get a satisfying assignment for a PL formula
F, we need only the following four commands.

1. First, we write (define-fun X Bool) for each propositional variable X in our formula
F.

2. Then, we write (assert F) and have to write the formula F using the prefix (or
Polish) notation that is defined at the following URL.
http://smtlib.cs.uiowa.edu/theories-Core.shtml

E.g., for PL formulas F1,F2 we write (and F1 F2) instead of (F1 ∧ F2)

3. Next, we write (check-sat).

4. Finally, if the formula is satisfiable and we want to see a satisfying assignment, we can
write (get-model).

There are several SMT solvers available, we propose to use Z3 because it is also available
via a web interface. https://rise4fun.com/z3/

Matthias Heizmann Program Verification Summer Term 2021 38 / 507

http://smtlib.cs.uiowa.edu/theories-Core.shtml
https://rise4fun.com/z3/

Implications

Definition

Given a set of PL formulas Γ := {F1, . . .Fn} and a PL formula F ′, we say that Γ
implies F ′ if for all variable assignments ρ we have that
if [[Fi]]ρ = true holds for all i ∈ {1, . . . n} then also [[F ′]]ρ = true holds. We use �
to denote this binary implication relation and we say that the implication Γ � F ′

holds if Γ implies F ′.

Example

{A,A→ B} � A ∧ B {A→ B} � ¬B → ¬A

How can we prove that {F1, . . .Fn} implies F ′?

1. Truth table. (Not doable if number of variables is high)

2. Prove that the PL formula F1 ∧ . . . ∧ Fn → F ′ is valid. (Requires algorithm for

checking validity)

3. Prove that the PL formula ¬(F1 ∧ . . . ∧ Fn → F ′) is not satisfiable. (Theorem

on next slide – requires algorithm for checking satisfiability – implemented in SMT solvers)

4. Use a proof system (next subchapter)

Matthias Heizmann Program Verification Summer Term 2021 39 / 507

Satisfiability and Validity

Theorem

The PL formula F is valid iff the PL formula ¬F is not satisfiable.

Proof.

F valid
iff for all variable assignments ρ we have [[F]]ρ = true

(def of validity)

iff for all variable assignments ρ we have [[¬F]]ρ = false
(def of negation ¬)

iff there is no variable assignment ρ such that [[¬F]]ρ = true
iff ¬F not satisfiable

(def of satisfiability)

Matthias Heizmann Program Verification Summer Term 2021 40 / 507

Equivalence

Definition

We call two PL formulas F1 and F2 equivalent, denoted F1 ≡ F2, if they
evaluate to the same truth value under every variable assignment.

Note

F1 ≡ F2 iff {F1} � F2 and {F2} � F1

Matthias Heizmann Program Verification Summer Term 2021 41 / 507

Proof System (Informally)

I template for giving a proof

I reasoning according to a fixed number of rules

I prove once that every rule is “correct”

I find a proof find a sequence of rules

Matthias Heizmann Program Verification Summer Term 2021 42 / 507

Proof system NPL

I Proof system for implications between PL formulas.

I Proof rules of NPL are (n + 1)-ary relations over implications denoted
as follows:

Γ1 � F1 . . . Γn � Fn
Γn+1 � Fn+1

Idea: the rule represents a step in a proof with the following meaning.
If Γi implies Fi for i ∈ {1, . . . n} then Γn+1 implies Fn+1.

Matthias Heizmann Program Verification Summer Term 2021 43 / 507

Proof rules of NPL

(Ax)
Γ ∪ {F} � F

(RAA)
Γ ∪ {¬F} � false

Γ � F

Introduction rules:

(I∧)
Γ � F1 Γ � F2

Γ � F1 ∧ F2
(I∨i)

Γ � Fi

Γ � F1 ∨ F2
i ∈ {1, 2}

(I→)
Γ ∪ {F1} � F2

Γ � F1 → F2
(I¬)

Γ ∪ {F} � false

Γ � ¬F

Elimination rules:

(E∧i)
Γ � F1 ∧ F2

Γ � Fi
i ∈ {1, 2} (E∨)

Γ � F1 ∨ F2 Γ ∪ {F1} � F3 Γ ∪ {F2} � F3

Γ � F3

(E→)
Γ � F1 Γ � F1 → F2

Γ � F2
(E¬)

Γ � F1 Γ � ¬F1

Γ � F2

The letters F , F1, F2, F3 denote PL formulas.

Matthias Heizmann Program Verification Summer Term 2021 44 / 507

Proof system NPL

Definition
A derivation is a tree whose nodes are labelled by implications such that the
following holds. If a node labelled by implication Γn+1 � Fn+1 has children that
are labelled by implications Γ1 � F1 . . . Γn � Fn then

Γ1 � F1 . . . Γn � Fn

Γn+1 � Fn+1

must be an instance of some rule.

Example

Let A,B be PL variable, define Γ := {A,A→ B}

Γ � A ∧ B

Γ � A Γ � B

Γ � A Γ � A→ B

(Ax)
Γ � A

(Ax)
Γ � A

(Ax)
Γ � A→ B(I→)

Γ � B(I∧)
Γ � A ∧ B

Matthias Heizmann Program Verification Summer Term 2021 45 / 507

I For derivations: We do not use the typical graph representation of
a tree (left, striked out). Instead, we use horizontal lines together
with the names of proof rules (right).

I We conclude from the preceding definition that a leaf of the
derivation can only be labelled by a implication Γ � F such that

Γ � F
is an instance of some (unary) rule.

Matthias Heizmann Program Verification Summer Term 2021 46 / 507

By now, we saw several definitions (proof rules of NPL, derivation) but
we may still wonder whether NPL is good for something.
The following theorem shows us an application: NPL can be used to
prove implications. Whenever we want to prove an implication, we can
find a derivation and conlude that the implication hols.
A consequence: If we have to implement a tool for proving
implications, we can solve the task by developing an algorithm for
finding derivations.7

7Please note however that we introduce NPL mainly to get familiar with proof
systems. State-of-the-art SAT solver implement completely different
algorithms [jsat/HeuleJS19]

Matthias Heizmann Program Verification Summer Term 2021 47 / 507

Proof system NPL

Theorem (Soundness of NPL)

If a node in a derivation is labelled by Γ � Fn+1, then the implication
Γ � Fn+1 holds.

Proof.

(Sketch) Show for each rule that the implication below the line holds if all
implications above the line hold. Use induction to conclude that the
theorem holds.

Theorem (Completeness of NPL)

If the implication Γ � Fn+1 holds then there exists some derivation in
which the root is labelled by Γ � Fn+1,

Proof difficult, not in the scope of this lecture.

Matthias Heizmann Program Verification Summer Term 2021 48 / 507

Example: Construction of a Derivation

Let’s prove the implication {A,A→ B}︸ ︷︷ ︸
:=Γ

� A ∧ B

(Ax)
Γ ∪ {F} � F

(RAA)
Γ ∪ {¬F} � false

Γ � F

Introduction rules:

(I∧)
Γ � F1 Γ � F2

Γ � F1 ∧ F2
(I∨i)

Γ � Fi

Γ � F1 ∨ F2
i ∈ {1, 2}

(I→)
Γ ∪ {F1} � F2

Γ � F1 → F2
(I¬)

Γ ∪ {F} � false

Γ � ¬F

Elimination rules:

(E∧i)
Γ � F1 ∧ F2

Γ � Fi
i ∈ {1, 2} (E∨)

Γ � F1 ∨ F2 Γ ∪ {F1} � F3 Γ ∪ {F2} � F3

Γ � F3

(E→)
Γ � F1 Γ � F1 → F2

Γ � F2
(E¬)

Γ � F1 Γ � ¬F1

Γ � F2

Γ � A ∧ B
(I∧)

Γ � A
(Ax)

Γ � B
(E→)

Γ � A Γ � A→ B
(Ax) (Ax)

Matthias Heizmann Program Verification Summer Term 2021 49 / 507

A guide for proving implications.

1. Goal: Try to construct a derivation whose root node is labelled by the
implication that we want to prove.

2. Start bulding the tree at the root (bottom).

3. For each node in the tree, use the rules to determine the number of
children and their labels, because we must never violate the definition of
a derivation.

4. Use the Rule Ax as soon as possible because it allow us to construct a
leaf of the tree without violating the defintion of a derivation.

In the example form the preceding slide we start with a root node that is
labelled by Γ � A ∧ B. Since the right hand side of this implication is a
conjunction we cannot use the rules I∨1 , I∨1 , I→, I¬ to construct the children of
our root node. Since Γ does not contain A ∧ B we cannot use the rule Ax .
Without looking a few steps ahead, we cannot exlude any other rule and have
to try all of them. Luckily, this example is rather simple and by looking a few
steps ahead we see that the rule I∧ is a good choice.

Matthias Heizmann Program Verification Summer Term 2021 50 / 507

We note that it is not allowed to replace formulas by equivalent formulas in a
derivation. E.g., the following tree is not a derivation (according to the
definition), because it is not allowed to swap the operands of the logical
connective ∧.

Γ � B ∧ A
(I∧)

Γ � A
(Ax)

Γ � B
(E→)

Γ � A Γ � A→ B
(Ax) (Ax)

Rationale: In a proof system, it should be possible to find (and check)
derivations by mechanically applying rules without a need for understanding
the semantics of formulas. We can e.g., implement a proof system on a
computer without teaching the computer to understand the semantics of
formulas.

Matthias Heizmann Program Verification Summer Term 2021 51 / 507

Program Verification
Summer Term 2021

Lecture 3: First-Order Logic

Matthias Heizmann

Monday 26th April

Matthias Heizmann Program Verification Summer Term 2021 52 / 507

Section 3

First-Order Logic

Matthias Heizmann Program Verification Summer Term 2021 53 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 54 / 507

Like propositional logic, first-order logic (also known as predicate logic) is a basic concept in
computer science that has applications in many areas, but there exist several terminology
and several notations.

Goals of this section are

I recall the basic ideas of first-order logic

I fix the notation and terminology that we use in this lecture

I get more familiar with proof systems / see proof rules with side-conditions

I learn to formalize statements in first-order logic

Matthias Heizmann Program Verification Summer Term 2021 55 / 507

Before we introduce first-order logic formally, we will have a look at
three examples.

On the next two slides you will see three “famous” theorems and a
formalization in first-order logic.

Matthias Heizmann Program Verification Summer Term 2021 56 / 507

Famous Theorems in FOL

I The length of one side of a triangle is less than the sum of the lengths
of the other two sides.

∀x , y , z . triangle(x , y , z)→ length(x) < length(y) + length(z)

I Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2
→ ∀x , y , z .

integer(x) ∧ integer(y) ∧ integer(z)
∧x > 0 ∧ y > 0 ∧ z > 0
→ xn + yn 6= zn

Matthias Heizmann Program Verification Summer Term 2021 57 / 507

Famous Theorems in FOL

For every regular Language L there is some n ≥ 0, such that for all words
z ∈ L with |z | ≥ n there is a decomposition z = uvw with |v | ≥ 1 and
|uv | ≤ n, such that for all i ≥ 0: uv iw ∈ L.

∀L. regularlanguage(L)→
∃n. integer(n) ∧ n ≥ 0∧
∀z . z ∈ L ∧ |z | ≥ n→
∃u, v ,w . word(u) ∧ word(v) ∧ word(w)∧

z = uvw ∧ |v | ≥ 1 ∧ |uv | ≤ n∧
∀i . integer(i) ∧ i ≥ 0→ uv iw ∈ L

Predicate symbols: regularlanguage, integer , word , · ∈ ·, · ≤ ·, · ≥ ·, · = ·
Constant symbols: 0, 1
Function symbols: | · | (word length), concatenation, iteration

Matthias Heizmann Program Verification Summer Term 2021 58 / 507

Syntax of First-order Logic

Definition
Let a vocabulary V be a tuple (VVar,VConst,VFun,VPred) such that

I VVar is a countable set whose elements we call variables.

I VConst is a countable set whose elements we call constant symbols.

I VFun is a countable set whose elements we call function symbols. Each function
symbol f has a natural number ≥ 1 that we call the arity of f .

I VPred is a countable set whose elements we call predicate symbols. Each predicate
symbol p has a natural number ≥ 0 that we call the arity of p.

For the following definitions, we fix a vocabulary V = (VVar,VConst,VFun,VPred).

Definition

We define first-order logic (FOL) terms inductively as follows.

1. For each x ∈ VVar, x is a term.

2. For each c ∈ VConst, c is a term.

3. If t1, . . . tn are terms, f ∈ VFun, f has arity n, then f (t1, . . . , tn) is a term.

Matthias Heizmann Program Verification Summer Term 2021 59 / 507

Syntax of First-order Logic

Definition

We define first-order logic (FOL) formulas inductively as follows.

1. false is a formula.

2. If t1, . . . tn are terms, p ∈ VPred, p has arity n, then p(t1, . . . , tn) is a formula.

3. If ϕ is a formula, then ¬ϕ is a formula.

4. If ϕ1 and ϕ2 are formulas, then (ϕ1 ∧ ϕ2) is a formula.

5. If ϕ is a formula and x ∈ VVar then ∃x .ϕ is a formula.

Abbreviations, Terminology, and Notation

I Analogously to propositional logic we use the abbreviations ∨,→,↔.

I Additionally, we introduce ∀x .ϕ := ¬∃x .¬ϕ
I We call the symbols ∃ and ∀ quantifiers. We call formulas of the form true, false,

and p(t1, . . . , tn) atoms.

I Analogously to propositional logic we may omit parentheses. The precedence of
quantifiers is lower than the precedence of logical connectives.

We may abbreviate ∃x1.∃x2.ϕ to ∃x1, x2.ϕ
Matthias Heizmann Program Verification Summer Term 2021 60 / 507

Definition

A model M = (D, I) is a pair where D is a set that we call interpretation
domain and I is a function that we call interpretation function and that
has the following properties.

I The domain of I is VConst ∪ VFun ∪ VPred.

I I maps every constant symbol to an element of D.

I I maps every n-ary function symbol to an n-ary function whose
domain is Dn and whose range is D.

I I maps every n-ary predicate symbol to an n-ary relation over D.

We call a function ρ : VVar → D that maps variable symbols to elements of
the interpretation domain a variable assignment.

Notation

Let f : X → Y be a function whose domain is some set X and whose range
is some set Y . Let x̃ ∈ X and ỹ ∈ Y , then we use f C {x̃ → ỹ} to denote
the function that maps all x ∈ X\{x̃} to f (x) and that maps x̃ to ỹ .

Matthias Heizmann Program Verification Summer Term 2021 61 / 507

Semantics of First-order Logic

Definition

The evaluation of terms is a mapping [[·]]M,ρ that takes a formula ϕ, a
model M = (D, I), and a variable assignment ρ, and returns an element
of D. It is inductively defined as follows.

1. For each x ∈ VVar, [[x]]M,ρ is ρ(x).

2. For each c ∈ VConst, [[c]]M,ρ is I(c).

3. If t1, . . . tn are terms, f ∈ VFun, f has arity n, then [[f (t1, . . . , tn)]]M,ρ

is I(f)([[t1]]M,ρ, . . . , [[tn]]M,ρ).

Matthias Heizmann Program Verification Summer Term 2021 62 / 507

Semantics of First-order Logic

Definition
The evaluation of formulas is a mapping [[·]]M,ρ that takes a formula ϕ, a model
M = (D, I), and a variable assignment ρ, and returns a truth value. It is inductively
defined as follows.

1. [[false]]M,ρ is false.

2. [[p(t1, . . . , tn)]] is

{
true if ([[t1]]M,ρ, . . . , [[tn]]M,ρ) ∈ I(p)

false otherwise.

3. [[¬ϕ]]M,ρ is

{
true if [[ϕ]]M,ρ is false

false if [[ϕ]]M,ρ is true.

4. [[ϕ1 ∧ ϕ2]]M,ρ is

{
true if [[ϕ1]]M,ρ is true and [[ϕ2]]M,ρ is true

false otherwise.

5. [[∃x .ϕ]]M,ρ is


true if there exists v ∈ D

such that [[ϕ]]M,ρC{x 7→v} is true

false otherwise.

Matthias Heizmann Program Verification Summer Term 2021 63 / 507

Program Verification
Summer Term 2021

Lecture 4: First-Order Logic cont’d

Matthias Heizmann

Wednesday 28th April

Matthias Heizmann Program Verification Summer Term 2021 64 / 507

Satisfiability and Validity

Definition (Satisfiability)

We call a formula ϕ satisfiable if there exists a model M and a variable
assignment ρ such that [[ϕ]]M,ρ is true.

Definition (Validity)

We call a formula ϕ valid if [[ϕ]]M,ρ is true for all models M and for all
variable assignments ρ.

Note

ϕ is valid iff ¬ϕ is unsatisfiable

Matthias Heizmann Program Verification Summer Term 2021 65 / 507

Implications

Definition

Given a (possibly infinite) set of FOL formulas Γ and a FOL formula ψ, we
say that Γ implies ψ if for all models M and for all variable assignments ρ
we have that
if [[ϕ]]M,ρ = true holds for all ϕ ∈ Γ then also [[ψ]]M,ρ = true holds.
We use � to denote this binary implication relation and we say that the
implication Γ � ψ holds if Γ implies ψ.

Matthias Heizmann Program Verification Summer Term 2021 66 / 507

Definition (Free Variables, Bound Variables, Closed Formulas)

Given a FOL term t, we define the set of free variables inductively as
follows.

freevars(t) =


{x} if t is x ∈ VVar

∅ if t is c ∈ VConst

freevars(t1) ∪ . . . ∪ freevars(tn) if t is f (t1, . . . , tn)

Given a FOL formula ψ, we define the set of free variables inductively as
follows.

freevars(ψ) =



∅ if ψ is false

freevars(t1) ∪ . . . ∪ freevars(tn) if ψ is p(t1, . . . , tn)

freevars(ϕ) if ψ is ¬ϕ
freevars(ϕ1) ∪ freevars(ϕ2) if ψ is ϕ1 ∧ ϕ2

freevars(ϕ)\{x} if ψ is ∃x .ϕ
We call a variable that occurs in ψ but is not free bound.
We call a formula that does not contain free variables closed.

Note: For a closed formula ϕ the evaluation [[ϕ]]M,ρ is independent of the variable

assignment ρ.

Matthias Heizmann Program Verification Summer Term 2021 67 / 507

Notation
I Given a function f , we use dom(f) to denote the domain of f .

I Given a function f that maps variables to terms, we use vars(f) to denote the set that
contains dom(f) and all variables of all terms in the range of f . I.e.,
vars(f) = dom(f) ∪

⋃
x∈dom(f)

freevars(f (x))

Definition (Substitution)
Given a function σ from variable symbols to terms we define the substitution for FOL terms t
and FOL formulas ψ as follows.

tσ =


σ(x) if t is x ∈ VVar and x ∈ dom(σ)

t if t is c ∈ VConst or if t is x ∈ VVar and x 6∈ dom(σ)

f (t1σ, . . . , tnσ) if t is f (t1, . . . , tn)

ψσ =



false if ψ is false

p(t1σ, . . . , tnσ) if ψ is p(t1, . . . , tn)

¬(ϕσ) if ψ is ¬ϕ
ϕ1σ ∧ ϕ2σ if ψ is ϕ1 ∧ ϕ2

∃x .ϕσ if ψ is ∃x .ϕ and x /∈ vars(σ)

∃x ′.(ϕσ′)σ if ψ is ∃x .ϕ and x ∈ vars(σ)

where σ′ is the function that maps x to x ′ and x ′ is a fresh variable (i.e., a variable that neither
occurs in ψ nor in vars(σ)).

Matthias Heizmann Program Verification Summer Term 2021 68 / 507

Notation

If we do not want to specify the substitution function σ separately, we
write ϕ[x1 7→ t1, . . . , xn 7→ tn] instead of ϕσ if σ is the function that maps
xi to ti for i ∈ {1, . . . , n}.

Notation

We sometimes use ϕ[x] to refer to a formula and a variable.
We may then use in this context ϕ[t] to denote ϕ[x 7→ t].

Matthias Heizmann Program Verification Summer Term 2021 69 / 507

Analogously to NPL for propositional logic there is a proof system for proving
implications Γ � ϕ of FOL formulas.
We call this proof system natural deduction for first order logic and denote it by
NFOL. Analogously to NPL we define the term derivation and use this tree as a proof.

For each rule of NPL there is an analogous rule in NFOL. Additionally we have the
four rules that are shown on the next slide. Two of these rules have additional side
conditions that are written right beneath the rule. A tree is only a derivation if all
side conditions are satisfied.

Matthias Heizmann Program Verification Summer Term 2021 70 / 507

Proof rules of NFOL

For each rule of NPL there is an analogous rule in NFOL. Additionally we have the
following four rules, where ϕ is some a FOL formula, t is some FOL term and x , y are
variables.

(I∀)
Γ � ϕ[x 7→ y]

Γ � ∀x .ϕ (a) (E∀)
Γ � ∀x .ϕ

Γ � ϕ[x 7→ t]

(I∃)
Γ � ϕ[x 7→ t]

Γ � ∃x .ϕ (E∃)
Γ � ∃x .ϕ Γ ∪ {ϕ[x 7→ y]} � ψ

Γ � ψ
(b)

(a) y /∈ freevars(Γ) and either x = y or y /∈ freevars(ϕ)

(b) y /∈ freevars(Γ ∪ ψ) and either x = y or y /∈ freevars(ϕ)

Matthias Heizmann Program Verification Summer Term 2021 71 / 507

Example

Γ = { ∀x , y , z .p(x , y) ∧ p(y , z)→ p(x , z), ∀x , y .p(x , y)→ p(y , x) }

Task: prove that the implication Γ � p(a, b) ∧ p(b, c)→ p(c, a) is valid.

(Ax)
Γ′ � p(a, b) ∧ p(b, c)

(Ax)
Γ′ � ∀x. ∀y. ∀z. p(x, y) ∧ p(y, z)→ p(x, z)

(E∀)
Γ′ � ∀y. ∀z. p(a, y) ∧ p(y, z)→ p(a, z)

(E∀)
Γ′ � ∀z. p(a, b) ∧ p(b, z)→ p(a, z)

(E∀)
Γ′ � p(a, b) ∧ p(b, c)→ p(a, c)

(E→)
Γ′ � p(a, c)

(Ax)
Γ′ � ∀x. ∀y. p(x, y)→ p(y, x)

(E∀)
Γ′ � ∀y. p(a, y)→ p(y, a)

(E∀)
Γ′ � p(a, c)→ p(c, a)

(E→)
Γ′ � p(c, a)

(I→)
Γ � p(a, b) ∧ p(b, c)→ p(c, a)

In this derivation, we use Γ′ as a shorthand for Γ ∪ {p(a, b) ∧ p(b, c)}.

Matthias Heizmann Program Verification Summer Term 2021 72 / 507

Program Verification
Summer Term 2021

Lecture 5: First-Order Theories

Matthias Heizmann

Monday 3rd May

Matthias Heizmann Program Verification Summer Term 2021 73 / 507

Section 4

First-Order Theories

Matthias Heizmann Program Verification Summer Term 2021 74 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 75 / 507

In practice, symbols like e.g., the constant symbol “0”, the function symbol “+”, or the
relation symbol “=” come with a fixed predefined meaning. In this section we will see how
we can give symbols in first-order logic a meaning.

What we learn in this section:

I Our intuitive understanding of satisfiability and validity does not always coincide with
the classical definition from the last section.

I Finding all axioms that are needed to define the meaning of a symbol is an
error-prone and difficult task.

I The expressiveness of an apparently simple theory can be surprisingly high.

I An apparently simple theory can be undecidable.

I There are not only theories for classical arithmetic but also for arithmetic of CPUs

Matthias Heizmann Program Verification Summer Term 2021 76 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 77 / 507

Notation

We do not only want to use abstract constant symbols c , d , e, . . . function
symbols f , g , h . . . and predicate symbols p, q, . . . but also the symbols
0, 1,+, ·, /,=,≤, If we use these symbols, we use an infix notation.
E.g., we write ∃x . y = 2 · x instead of ∃x . = (y , ·(2, x))

Warning: symbols might not have the expected meaning.

Matthias Heizmann Program Verification Summer Term 2021 78 / 507

First-Order Theories: Motivation

Is the following program correct?

1 void copyAtoBandC(int a) {

2 int b = a;

3 int c = b;

4 assert (c == a);

5 }

In order to check correctness, we would like to check validity of the
following FOL formula.

(a = b ∧ b = c)→ c = a

Problem:
Formula not valid. Counterexample: model M = (D, I) where
D = {♣,♠} and I maps the 2-ary predicate symbol = to the binary
relation {(♣,♠), (♠,♣)} ⊆ D ×D.

Matthias Heizmann Program Verification Summer Term 2021 79 / 507

First-Order Theories: Motivation

Problem: We do not want to check if ϕ is valid.
We want to check if ϕ holds for some (partial) model M.

Solution: Find a set of formulas AT such that only M (and “similar”
models) can make all these formulas valid.
Check if AT implies ϕ.

Example

We will not check if ϕ : (a = b ∧ b = c)→ c = a is valid.
Instead we consider the set AT that contains the following three formulas

∀x . x = x , (reflexivity)

∀x , y . x = y → y = x , (symmetry)

∀x , y , z . x = y ∧ y = z → x = z , (transitivity)

and check if AT implies ϕ.

Matthias Heizmann Program Verification Summer Term 2021 80 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 81 / 507

First-Order Theories: Definition

Definition (First-order theory)

A first-order theory T consists of

I A signature Σ - set of constant, function, and predicate symbols

I A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers.

Idea:

I The symbols of Σ are just symbols without prior meaning.

I The axioms of T provide their meaning.

Matthias Heizmann Program Verification Summer Term 2021 82 / 507

T -Validity and T -Satisfiability

Definition (T -model)

A model M is a T-model, if [[ϕ]]M,ρ = true for all ϕ ∈ AT and for all
variable assignments ρ.

Definition (T -valid)

A Σ-formula ϕ is valid in theory T (T-valid),
if for every T -model M, it holds that [[ϕ]]M = true.

Definition (T -satisfiable)

A Σ-formula ϕ is satisfiable in T (T-satisfiable),
if there is a T -model M such that [[ϕ]]M = true.

Definition (T -equivalent)

Two Σ-formulae ϕ1 and ϕ2 are equivalent in T (T-equivalent),
if ϕ1 ↔ ϕ2 is T -valid.

Matthias Heizmann Program Verification Summer Term 2021 83 / 507

Program Verification
Summer Term 2021

Lecture 6: First-Order Theories

Matthias Heizmann

Wednesday 5th May

Matthias Heizmann Program Verification Summer Term 2021 84 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 85 / 507

Theory of Equality: Motivation

Question: Are the following axioms sufficient for defining the usual
meaning of the equality symbol?

∀x . x = x , (reflexivity)

∀x , y . x = y → y = x , (symmetry)

∀x , y , z . x = y ∧ y = z → x = z , (transitivity)

Hint: Is the following formula implied by the axioms?
a = b ∧ f (a) = c → f (b) = c

Answer: These axioms are sufficient if there are no other predicate
symbols or function symbols.
Otherwise these axioms are not sufficient because we expect
that functions return the same outputs for the same inputs.

Matthias Heizmann Program Verification Summer Term 2021 86 / 507

Theory of Equality TE

Signature Σ= : {=, a, b, c , · · · , f , g , h, · · · , p, q, r , · · · }
I =, a binary predicate, interpreted by axioms.

I all constant, function, and predicate symbols.

Axioms of TE :

1. ∀x . x = x (reflexivity)

2. ∀x , y . x = y → y = x (symmetry)

3. ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4. for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5. for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn)↔ p(y1, . . . , yn))

(equivalence)

Matthias Heizmann Program Verification Summer Term 2021 87 / 507

Axiom Schemata

Congruence and Equivalence are axiom schemata.

4. for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5. for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn)↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schema.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2→ f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.

Matthias Heizmann Program Verification Summer Term 2021 88 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 89 / 507

On the next slide, we will next define our own theory and see that this
is a difficult task.

Question 1: Are axioms 1-3 sufficient?

Hint 1: Is the formula ¬∃x . ∀y . x �win y (no element wins against
all others) valid with respect to these axioms?

Answer 1: Axioms 1-3 are not sufficient. A model in which �win is
mapped to a relation that contains all pairs would satisfy
the axioms.

Question 2: Are axioms 1-9 sufficient?

Hint 2: Is the formula ¬∃x . ∀y . x �win y valid with respect to
axioms 1-9?

Answer 2: Axioms 1-9 are not sufficient. A model in which the
domain contains also an element Well that wins against
all others would satisfy the axioms.

As a solution, we also add axiom 10 which however requires that we
also add axioms that define the semantics of the equality symbol.

Matthias Heizmann Program Verification Summer Term 2021 90 / 507

Exercise: Define Theory of Rock-Paper-Scissors

I Signature ΣRPS

Constant symbols: Rock,Paper,Scissors

Relation symbol: �win

I Axioms ATRPS

1. Rock �win Scissors
2. Scissors �win Paper
3. Paper �win Rock

4. ¬Rock �win Rock
5. ¬Rock �win Paper
6. ¬Scissors �win Scissors

7. ¬Scissors �win Rock
8. ¬Paper �win Paper
9. ¬Paper �win Rock

10. ∀x . x = Rock ∨ x = Paper ∨ x = Scissors

Are the following formulas T-valid?

I ¬∃x . ∀y . x �win y

I ∀x . ∃y . x �win y

Matthias Heizmann Program Verification Summer Term 2021 91 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 92 / 507

Decidability

Reminder

We call a problem decidable if there exists an algorithm that terminates on
all instances of the problem and gives a correct yes/no answer.
We call a problem semi-decidable if there exists an algorithm that
terminates at least on all “yes”-instances of the problem and gives a
correct answer if it terminates.

Example of an undecidable problem: halting problem for Turing machines.
Typical way to prove decidability: give an algorithm and prove its correctness.
Typical way to prove undecidability: proof via a diagonal argument (e.g., Cantor’s
diagonal argument) or proof via reduction.

Matthias Heizmann Program Verification Summer Term 2021 93 / 507

Decidability

Theorem

Satisfiability of PL formulas is decidable.

Proof not given in this course.
Decision procedure: truth table.

Theorem

Satisfiability of FOL formulas is undecidable.

Proof not given in this course.

Theorem

Validity of FOL formulas is semi-decidable.

Proof not given in this course.
Decision procedure: enumerate trees to find a derivation, semi-decidability follows

from soundness and completeness of NFOL

Matthias Heizmann Program Verification Summer Term 2021 94 / 507

Decidability of TE

Is it possible to decide TE -validity?

Theorem

TE -validity is undecidable.

Proof not given in this course.

If we restrict ourselves to quantifier-free formulae we get decidability:

Theorem

For a quantifier-free formula TE -validity is decidable.

Proof not given in this course.

Matthias Heizmann Program Verification Summer Term 2021 95 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 96 / 507

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

I Peano arithmetic TPA: natural numbers with addition and
multiplication

I Presburger arithmetic TN: natural numbers with addition

I Theory of integers TZ: integers with +,−, >

Matthias Heizmann Program Verification Summer Term 2021 97 / 507

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1. ∀x . ¬(x + 1 = 0) (zero)

2. ∀x , y . x + 1 = y + 1→ x = y (successor)

3. ϕ[0] ∧ (∀x . ϕ[x]→ ϕ[x + 1])→∀x . ϕ[x] (induction)

4. ∀x . x + 0 = x (plus zero)

5. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6. ∀x . x · 0 = 0 (times zero)

7. ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Matthias Heizmann Program Verification Summer Term 2021 98 / 507

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥:
3x + 5 > 2y write as ∃z . z 6= 0 ∧ 3x + 5 = 2y + z
3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

I Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

I Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2→¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Matthias Heizmann Program Verification Summer Term 2021 99 / 507

Expressiveness of Peano Arithmetic (2)

In Fermat’s theorem we used xn, which is not a valid term in ΣPA.
However, there is the ΣPA-formula EXP[x , n, r] with

1. EXP[x , 0, r]↔ r = 1

2. EXP[x , i + 1, r]↔∃r1. EXP[x , i , r1] ∧ r = r1 · x

EXP[x , n, r] : ∃d ,m. (∃z . d = (m + 1)z + 1)∧
(∀i , r1. i < n ∧ r1 < m ∧ (∃z . d = ((i + 1)m + 1)z + r1)→

r1x < m ∧ (∃z . d = ((i + 2)m + 1)z + r1 · x))∧
r < m ∧ (∃z . d = ((n + 1)m + 1)z + r)

Fermat’s theorem can be stated as:

∀n. n > 2→¬∃x , y , z , rx , ry . x 6= 0 ∧ y 6= 0 ∧ z 6= 0∧
EXP[x , n, rx] ∧ EXP[y , n, ry] ∧ EXP[z , n, rx + ry]

Matthias Heizmann Program Verification Summer Term 2021 100 / 507

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula ϕ[x1, . . . , xn, r] with

ϕ[x1, . . . , xn, r]↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel ’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations.

For decidability: no multiplication.
Matthias Heizmann Program Verification Summer Term 2021 101 / 507

Presburger Arithmetic TN

Signature: ΣN : {0, 1, +, =} no multiplication!

Axioms of TN: axioms of TE ,

1. ∀x . ¬(x + 1 = 0) (zero)

2. ∀x , y . x + 1 = y + 1→ x = y (successor)

3. ϕ[0] ∧ (∀x . ϕ[x]→ ϕ[x + 1])→∀x . ϕ[x] (induction)

4. ∀x . x + 0 = x (plus zero)

5. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable. (Presburger 1929)

Matthias Heizmann Program Verification Summer Term 2021 102 / 507

Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where
I . . . ,−2,−1, 0, 1, 2, . . . are constants
I . . . ,−3·,−2·, 2·, 3·, . . . are unary functions

(intended meaning: 2 · x is x + x)
I +,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

I For every ΣZ-formula there is an equisatisfiable ΣN-formula.

I For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula ϕ and ΣN-formula G are equisatisfiable iff:

ϕ is TZ-satisfiable iff G is TN-satisfiable

Matthias Heizmann Program Verification Summer Term 2021 103 / 507

Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1→∃y . y > −1 ∧ x = y + 1.

Matthias Heizmann Program Verification Summer Term 2021 104 / 507

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn)− (zp − zn)− 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.
xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.
Matthias Heizmann Program Verification Summer Term 2021 105 / 507

Reducing TZ to TN.

To decide TZ-validity for a ΣZ-formula ϕ:

I transform ¬ϕ to an equisatisfiable ΣN-formula ¬ψ,

I decide TN-validity of ψ.

Matthias Heizmann Program Verification Summer Term 2021 106 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 107 / 507

Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

I Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

I Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z

Matthias Heizmann Program Verification Summer Term 2021 108 / 507

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1. ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2. ∀x , y . x + y = y + x (+ commutativity)
3. ∀x . x + 0 = x (+ identity)
4. ∀x . x + (−x) = 0 (+ inverse)
5. ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6. ∀x , y . x · y = y · x (· commutativity)
7. ∀x . x · 1 = x (· identity)
8. ∀x . x 6= 0→∃y . x · y = 1 (· inverse)
9. ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)

10. 0 6= 1 (separate identies)
11. ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12. ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13. ∀x , y . x ≥ y ∨ y ≥ x (totality)
14. ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15. ∀x , y . x ≥ 0 ∧ y ≥ 0→ x · y ≥ 0 (· ordered)
16. ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17. for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1y

n−1 · · ·+ x1y + x0 = 0 (at least one root)

Matthias Heizmann Program Verification Summer Term 2021 109 / 507

Decidability of TR

TR is decidable (Tarski, 1930)

High time complexity: O(22kn)

Matthias Heizmann Program Verification Summer Term 2021 110 / 507

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TQ: axioms of TE ,

1. ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2. ∀x , y . x + y = y + x (+ commutativity)

3. ∀x . x + 0 = x (+ identity)

4. ∀x . x + (−x) = 0 (+ inverse)

5. 1 ≥ 0 ∧ 1 6= 0 (one)

6. ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7. ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8. ∀x , y . x ≥ y ∨ y ≥ x (totality)

9. ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10. For every positive integer n:
∀x . ∃y . x = y + · · ·+ y︸ ︷︷ ︸

n

(divisible)

Matthias Heizmann Program Verification Summer Term 2021 111 / 507

Expressiveness and Decidability of TQ

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

x + x + x + y + y + y + y ≥ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
24

TQ is decidable.
Efficient algorithm for quantifier free fragment.

Matthias Heizmann Program Verification Summer Term 2021 112 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 113 / 507

Theory of Arrays TA

Signature: ΣA : {·[·], ·〈· / ·〉, =},
where

I a[i] binary function –
read array a at index i (“read(a,i)”)

I a〈i / v〉 ternary function –
write value v to index i of array a (“write(a,i ,e)”)

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2. ∀a, i , j . i = j → a[i] = a[j] (array congruence)

3. ∀a, v , i , j . i = j → a〈i / v〉[j] = v (read-over-write 1)

4. ∀a, v , i , j . i 6= j → a〈i / v〉[j] = a[j] (read-over-write 2)

Matthias Heizmann Program Verification Summer Term 2021 114 / 507

Equality in TA

Note: = is only defined for array elements

a[i] = e→ a〈i / e〉 = a

not TA-valid, but

a[i] = e→∀j . a〈i / e〉[j] = a[j] ,

is TA-valid.

Also
a = b→ a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable.
Quantifier-free fragment of TA is decidable.

Matthias Heizmann Program Verification Summer Term 2021 115 / 507

Theory of Arrays T=
A (with extensionality)

Signature and axioms of T=
A are the same as TA, with one additional

axiom
∀a, b. (∀i . a[i] = b[i])↔ a = b (extensionality)

Example:
F : a[i] = e→ a〈i / e〉 = a

is T=
A -valid.

T=
A is undecidable.

Quantifier-free fragment of T=
A is decidable.

Matthias Heizmann Program Verification Summer Term 2021 116 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 117 / 507

Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

I signature Σ1 ∪ Σ2

I axioms A1 ∪ A2

Matthias Heizmann Program Verification Summer Term 2021 118 / 507

Nelson & Oppen

qff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T1 is decidable,
satisfiability of qff of T2 is decidable, and
certain technical requirements are met

then satisfiability of qff of T1 ∪ T2 is decidable.

Matthias Heizmann Program Verification Summer Term 2021 119 / 507

Theory of Bit-vectors

Idea: theory for low-level arithmetic on computer hardware

I Domain: sequences of bits
e.g., 11111111 (which represents the natural number 255 or the
integer -1 in two’s complement representation)

I Functions: arithmetic and logical operations on FixedSizeBitvectors
bvadd8(11111101, 000000100) = 00000001
bvand8(11111101, 000000100) = 00000100
bvshl8(11111101, 000000001) = 11111010

I Predicates: comparisons
bvult8(11111101, 000000100) is false
bvslt8(11111101, 000000100) is true
Meaning of bit-vector as number only given by operator.

Signature Σ

I Constant symbols: 0, 1, 01, 10, 11, 001, . . .
I Function symbols: bvadd1, bvadd2, bvadd3 . . . , bvmul1 . . .
I Predicate symbols: bvult1, bvult2, bvult3 . . . , bvslt1 . . .

Axioms AT

Many
Matthias Heizmann Program Verification Summer Term 2021 120 / 507

Theory of Bit-vectors

1 signed char s = 400;

2 unsigned char u1 = 250;

3 unsigned char u2 = 250;

4 if (s >= u1 + u2) {

bvsge32(signExtendFrom8To32(s),
bvadd32(signExtendFrom8To32(u1), signExtendFrom8To32(u1)
)

Matthias Heizmann Program Verification Summer Term 2021 121 / 507

Theory of Floats

Does the following loop terminate?

1 for(double d = 0; d != 0.3; d += 0.1) {

2 }

Matthias Heizmann Program Verification Summer Term 2021 122 / 507

Outline of the Section on First-Order Theories

Motivation
T -Validity and T -Satisfiability
Theory of Equality
Theory of Rock-Paper-Scissors
Decidability
Natural Numbers and Integers
Rationals and Reals
Arrays
Combination of Theories
Decidability

Matthias Heizmann Program Verification Summer Term 2021 123 / 507

First-Order Theories

Theory Decidable QFF Dec.

TE Equality −
√

TPA Peano Arithmetic − −
TN Presburger Arithmetic

√ √

TZ Linear Integer Arithmetic
√ √

TR Real Arithmetic
√ √

TQ Linear Rationals
√ √

TA Arrays −
√

T=
A Arrays with Extensionality −

√

TBV Bitvectors
√ √

TFloat FloatingPoint
√ √

Matthias Heizmann Program Verification Summer Term 2021 124 / 507

Section 5

SMT-LIB

Matthias Heizmann Program Verification Summer Term 2021 125 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 126 / 507

Goals of this section:

I Use a tool to check T-satisfiability (resp. T-validity) of a formula.

In detail:
I Get familiar with sorted logics
I Get familiar with the syntax of the SMT-LIB standard.
I Translate the syntax of the preceding sections into SMT-LIB and vice versa.

I Fix a semantics for symbols like, e.g., =,+,−, ·,mod ,≤, > for the remaining course.

Matthias Heizmann Program Verification Summer Term 2021 127 / 507

SMT-LIB

Quote from http://smtlib.org/ (2019-05-12)

SMT-LIB is an international initiative aimed at facilitating research
and development in Satisfiability Modulo Theories (SMT). Since its
inception in 2003, the initiative has pursued these aims by focusing on
the following concrete goals.

I Provide standard rigorous descriptions of background theories
used in SMT systems.

I Develop and promote common input and output languages for
SMT solvers.

I Connect developers, researchers and users of SMT, and develop
a community around it.

I Establish and make available to the research community a large
library of benchmarks for SMT solvers.

I Collect and promote software tools useful to the SMT
community.

Matthias Heizmann Program Verification Summer Term 2021 128 / 507

http://smtlib.org/

SMT Script

I File format that allows you to write commands for SMT solvers.

I File ending .smt2

I Prefix notation

Example:
(set-logic QF LIA) ← use quantifier-free linear integer arithmetic
(declare-fun x () Int) ← announce that constant x has sort Int
(declare-fun y () Int)

(assert (< x 2)) ← put formula on “assertion stack”
(assert (> x 0))

(check-sat) ← check satisfiability of conjunction
of all formulas on assertion stack

(get-model) ← get satisfying assignment
(assert (= x (* y 2)))

(check-sat)

Matthias Heizmann Program Verification Summer Term 2021 129 / 507

SMT-LIB: Theories

Theories defined by SMT-LIB standard:

I Integer
-,+,-,*,div,mod,abs,<=,<,>=,>

I Reals
-,+,-,*,/,<=,<,>=,>

I Arrays (will be introduced later in this course)

select,store

I FixedSizeBitvectors (not relevant in this course)

bvadd,bvmul, bvand, bvshl, bvult, ...

I FloatingPoint (not relevant in this course)

fp.add, fp.mul, fp.sqrt, fp.min, fp.leq, fp.isNaN, ...

http://smtlib.cs.uiowa.edu/theories.shtml

Matthias Heizmann Program Verification Summer Term 2021 130 / 507

http://smtlib.cs.uiowa.edu/theories.shtml

Conventions
I From now on we use the

SMT-LIB definitions for
theories.

I Let T be the combination of all
theories listed on the preceding
slide. Instead of T-satisfiability
(resp. T-validity) we will just
use the term satisfiability (resp.
validity).

Matthias Heizmann Program Verification Summer Term 2021 131 / 507

SMT-LIB: Logics

SMT-LIB logics:

I Describe syntactically and semantically restricted classes of sorted
FOL with equality.

I Specify background theories, restrict to quantifier-free formulas, . . .

I Allow solvers to use efficient, specialized techniques.

Examples:

I QF LIA: Quantifier-Free Linear Integer Arithmetic

I QF AX: Quantifier-Free formulas over Arrays with eXtensionality

I UFLRA: Linear Real Arithmetic with Uninterpreted sort and Function
symbols

Matthias Heizmann Program Verification Summer Term 2021 132 / 507

What is a logic?
We have seen propositional logic and first-order logic, and the previous slide
talked about different SMT-LIB logics. So what is a logic?
In general, a logic consists of two parts:

1. a language of logical formulas,

2. and an implication relation � between sets of formulas Γ and formulas ϕ.

For instance:

I We have defined the syntax of propositional logic formulas, and the
corresponding implication relation is defined based on the satisfying
assignments.

I Similarly, we defined the syntax of FOL formulas. The implication
relation is defined via models and satisfying assignments.

I In an SMT-LIB logic with background theory T , the formulas are a
syntactically restricted subset of the FOL formulas over the signature of
T . The implication relation is T -implication: Γ �T ψ if and only if for
every T -model M and every assignment ρ we have that if
[[ϕ]]M,ρ = true for all ϕ ∈ Γ, then [[ψ]]M,ρ = true also holds.

I Many other logics exist: You may have heard of temporal logics,
higher-order logics, intuitionistic logic, . . .

Matthias Heizmann Program Verification Summer Term 2021 133 / 507

SMT-LIB Terms
In the lecture, we defined a (FOL) term inductively to be a variable symbol, a
constant symbol, or the application of a function symbol to terms. We defined
a (FOL) formula to be the application of a predicate to terms, the negation of
a formula, the conjunction of two formulas, and the application of a quantifier
to a formula.
In SMT-LIB, every term has a sort. Constants are 0-ary functions, predicates
are functions of sort Bool, and logical connectives are functions with
argument sort Bool and return sort Bool. Therefore, a formula is just a term
of sort Bool as it is an application of a function symbol to terms.

Matthias Heizmann Program Verification Summer Term 2021 134 / 507

SMT-LIB: Terms

Terms as defined in the lecture:

I Constant symbol.

I Variable symbol.

I Application of a function symbol to terms.

Terms as defined in SMT-LIB:

I Constant symbol, variable symbol, function symbol (applied to
terms), variable binders applied to terms, annotations on terms.

I Only well-sorted terms allowed.

I Constant symbols are nullary function symbols.

I Predicates are function symbols of sort Bool.

I Logical connectives are function symbols, and formulas are terms of
sort Bool.

Matthias Heizmann Program Verification Summer Term 2021 135 / 507

On the previous slide, we have seen an overview about the conceptual
differences between (FOL) terms as defined in the lecture and
SMT-LIB terms as defined by the SMT-LIB standard.
There are also some differences in the notation of terms and formulas.
We show how to write terms and formulas as defined in the lecture as
SMT-LIB terms on the next slide.

Matthias Heizmann Program Verification Summer Term 2021 136 / 507

SMT-LIB: Terms

Term or formula SMT-LIB term

x x

c c

f (t1 . . . tn) (f t1 ... tn)

false false

¬F (not F)

F ∧ G (and F G)

∃x . F (exists ((x Sort)) (F))

Matthias Heizmann Program Verification Summer Term 2021 137 / 507

SMT Solvers

SMT solvers are tools that execute SMT scripts.

I Z38 [tacas/MouraB08]
Often used in this course because there is a Z3 web interface

I SMTInterpol9 [spin/ChristHN12]
Developed in our group at the University of Freiburg by Jochen
Hoenicke and Tanja Schindler.

I Many more are available. Check the list of SMT solvers at the
SMT-LIB website or the list of SMT solvers at Wikipedia.

You can submit SMT scripts to the SMT-LIB benchmark repository and
the annual SMT competition evaluates how SMT solver perform on these
benchmarks.

8Z3 https://github.com/Z3Prover/z3
9SMTInterpol https://ultimate.informatik.uni-freiburg.de/smtinterpol/

Matthias Heizmann Program Verification Summer Term 2021 138 / 507

https://rise4fun.com/z3
http://smtlib.cs.uiowa.edu/solvers.shtml
http://smtlib.cs.uiowa.edu/solvers.shtml
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories#Solvers
http://smtlib.cs.uiowa.edu/benchmarks.shtml
https://smt-comp.github.io/
https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/smtinterpol/

SMT-LIB Commands
We have already seen an example for an SMT script. It consists of several
commands that allow us, for instance, to tell the solver which logic to use,
which function symbols exist, which formulas to check for satisfiability, and so
on.
Communicating with the solver via commands allows to flexibly make use of
several functionalities of the solver.
Most solvers provide more functionalities than just checking a formula for
satisfiability. In the example script, we have seen the (get-model) command
that tells the solver to provide a model for a satisfiable formula. If a formula
is unsatisfiable, some solvers can also provide a proof for unsatisfiability (but
usually, this requires to set an option that tells the solver to keep track of the
proof, as this may be expensive).

Matthias Heizmann Program Verification Summer Term 2021 139 / 507

SMT-LIB: Commands

Important commands to communicate with the solver:

I Set solver parameters:
(set-option :produce-models true)

(set-logic QF LIA)

I Declare sorts and symbols:
(declare-sort U 0)

(declare-fun x () Int)

I Assert formulas:
(assert (> x 0))

I Check satisfiability:
(check-sat)

I Get models:
(get-model)

Matthias Heizmann Program Verification Summer Term 2021 140 / 507

Program Verification
Summer Term 2021

Lecture 7: Boogie, Boostan

Matthias Heizmann

Monday 10th May

Matthias Heizmann Program Verification Summer Term 2021 141 / 507

Section 6

Boogie and Boostan

Matthias Heizmann Program Verification Summer Term 2021 142 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 143 / 507

In this section we introduce the programming languages that are most relevant for this
course: Boogie and Boostan.

Goals of this section are:

I understand that real-world programming languages (C, Java, Python) are not a good
choice for presenting the material of this course

I recall the basic ideas of context-free grammars

I define the syntax of a new programming language

I define the semantics of this programming language

I define the meaning of “correctness” for programs written in that language

Matthias Heizmann Program Verification Summer Term 2021 144 / 507

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 145 / 507

Which programming language should we choose for our introduction to program
verification?

At a first glance it seems reasonable to pick a language that is used by many
programmers like e.g., C, Java, or Python. However, if we would do so we would
face the following problems.

I The syntax of these languages is very rich and (together with an explanation of
its meaning) could not be introduced within a few hours.

I The semantics of these languages is not defined very formally but in hundreds
of pages of prose. TODO cite examples We would have to formalize these
definitions which is a time-consuming task even if we restrict ourselves to a
small fragment of the languages syntax. TODO cite some research

In this subsection we present the languages that we choose is this course.

Matthias Heizmann Program Verification Summer Term 2021 146 / 507

Boogie and Boostan

Boogie

I Existing “programming language” optimized for verification.

I Devised by Rustan Leino.

I We will use Boogie for practical examples where we use tools.

Boostan

I Fragment of Boogie.

I (Will be) devised by the participants of this course.

I We will formally define the semantics of Boostan.

I We will use Boostan to formally introduce, discuss and analyze
verification techniques.

Matthias Heizmann Program Verification Summer Term 2021 147 / 507

Boogie

I Developed by Rustan Leino at Microsoft Research

I Programming language vs. verification language

I Intermediate language

I Supported by tools

I Limited features (scopes, side-effects, types, memory allocation,
concurrency)

TODO Write down what was said in the lecture on each bullet

Matthias Heizmann Program Verification Summer Term 2021 148 / 507

Boogie Tools: Boogaloo

Boogaloo is an interpreter for Boogie developed by Nadia Polikarpova.

I Available via web interface10

I Displays possible executions of a Boogie program

I Use option -o to control number of executions, e.g. -o 5 for 5
executions.

I To get more diverse executions, use -n, e.g. -n 3 for at most 3
executions with the same sequence of statements.

I Other interesting options: -c=0 turns off ”concrete mode”, -p
specifies entry procedure.

I Output with assume {: print "text"} true

I User Manual available11

10
http://comcom.csail.mit.edu/comcom/#Boogaloo

11
https://github.com/nadia-polikarpova/boogaloo/wiki/User-Manual

Matthias Heizmann Program Verification Summer Term 2021 149 / 507

http://comcom.csail.mit.edu/comcom/#Boogaloo
https://github.com/nadia-polikarpova/boogaloo/wiki/User-Manual

Boogie Tools: Boogaloo (Example)

Running the following program through Boogaloo with option -o 3

produces the output below, listing arguments, output, and return value.

1 procedure Square(a : int) returns (square: int) {

2 square := a * a;

3 if (square == 0) {

4 assume {: print "a is zero" } true;

5 } else {

6 assume {: print "a = ", a } true;

7 }

8 }

1 E x e c u t i o n 0 : Square (0) p a s s e d
2 a i s z e r o
3 Outs : s q u a r e −> 0
4
5 E x e c u t i o n 1 : Square (−1) p a s s e d
6 a = −1
7 Outs : s q u a r e −> 1
8
9 E x e c u t i o n 2 : Square (1) p a s s e d

10 a = 1
11 Outs : s q u a r e −> 1

Matthias Heizmann Program Verification Summer Term 2021 150 / 507

Boogie Tools: Boogaloo (Example)

Running the following program through Boogaloo with options -o 4 -n 1

-c=0 produces the output below.

1 procedure ZeroInit(a : [int]int , lo : int , hi : int) returns (b :

[int]int)

2 {

3 var i : int;

4 b := a;

5 i := lo;

6 while (i <= hi) {

7 b[i] := 0;

8 i := i+1;

9 }

10 }

1 E x e c u t i o n 0 : Z e r o I n i t ([] , 0 , −1) p a s s e d
2 Outs : b −> []
3
4 E x e c u t i o n 1 : Z e r o I n i t ([0 −> 0] , 0 , 0) p a s s e d
5 Outs : b −> [0 −> 0]
6
7 E x e c u t i o n 2 : Z e r o I n i t ([0 −> 0 , 1 −> 0] , 0 , 1) p a s s e d
8 Outs : b −> [0 −> 0 , 1 −> 0]
9

10 E x e c u t i o n 3 : Z e r o I n i t ([0 −> 0 , 1 −> 0 , 2 −> 0] , 0 , 2) p a s s e d
11 Outs : b −> [0 −> 0 , 1 −> 0 , 2 −> 0]

Matthias Heizmann Program Verification Summer Term 2021 151 / 507

You can try experimenting with the previous program and different
options:

I If you only pass -o, Boogaloo will only produce executions with
lo > hi.

This is because it first chooses a sequence of statements (go
through the loop once), and then searches variable values to fit
that sequence. Because there are infinitely many (unlike in the
first example), it will never consider another sequence.

I Additionally passing -n fixes this problem: It allows only the given
number of executions per sequence of statements. However, only 2
instead of 4 executions will be found.

This is because the number of possible values for the input
parameters is restricted (Boogaloo calls this the concrete mode).

I Additionally passing -c=0 turns off this concrete mode, finally
showing the diverse executions on the previous slide.

Different combinations of these options can often help get the desired
test cases for a program. However, always using all of them is not
necessarily the solution in every case.

Matthias Heizmann Program Verification Summer Term 2021 152 / 507

Boostan

The specification of Boogie12 [13] has 52 pages and is not written with the
formal rigor that we would like to have in this course.

Idea: let us define a (new) language Boostan

I syntax is a fragment of Boogie

I restricted to the needs of this course

I syntax and semantics defined very rigorously using terminology that
we know from computer science lectures (context-free grammar,
first-order logic)

I semantics compatible to Boogie

For our formal definitions, algorithms, theorems and proofs we will use Boostan. For

demonstrations with tools we use Boogie. We will not establish a formal connection

between Boogie and Boostan and resort to our intuition to get the connection.

12
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Matthias Heizmann Program Verification Summer Term 2021 153 / 507

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 154 / 507

Motivation: How can we Formalize Programs?

Sequence of characters vs. tree

while (i<x) {
x := x + i;

i := i + 1;

}

Xstmt

while (Xbexpr) { Xstmt }

Xiexpr < Xiexpr

i x

.

Matthias Heizmann Program Verification Summer Term 2021 155 / 507

I The syntax of a programming language is typically defined via a
context-free grammar or via a closely related concept.

I We will define the syntax of Boostan via a context-free grammar
and use a notation that is typically used in lectures on theoretical
computer science.

I In order to make you (again) familiar with context-free grammars
and in order to fix a notation for this course we give a formal
definition on the next slides.

Matthias Heizmann Program Verification Summer Term 2021 156 / 507

Definition

A context-free grammar is a 4-tupel G = (Σ,N,P,S) such that

I Σ is an alphabet, whose elements we call terminal symbols,

I N ist a finite set whose elements we call nonterminal symbols,

I P ⊆ N × (N ∪ Σ)∗ ist a finite relation whose elements we call
derivation rules,

I S ∈ N is a nonterminal symbol that we call start symbol

and Σ ∩ N 6= ∅.

Example

Consider G = (Σ,N,P,S) with Σ = {a, b},N = {S} and

P = { S → aSbS ,
S → bSaS ,
S → ε}.

Matthias Heizmann Program Verification Summer Term 2021 157 / 507

Definition

A derivation tree is an ordered tree together with a labelling function
λ : V → (N ∪ Σ ∪ {ε}) such that

I a node v ∈ V may only have children v1, . . . , vn ∈ V if
λ(v)→ λ(v1) . . . λ(vn) is a rule in P and

I all leafs are labelled by terminal symbols or by ε.

Example

Consider G = (Σ,N,P,S) with
Σ = {a, b},N = {S} and

P = { S → aSbS ,
S → bSaS ,
S → ε}.

Example

S

a S b S

ε b S a S

ε ε

Matthias Heizmann Program Verification Summer Term 2021 158 / 507

Definition

The derived word dw of a node v is inductively defined as follows.

dw(v) =

{
dw(v1) . . . dw(vn) if v has children v1, . . . vn

λ(v) otherwise

We say that a word w ∈ Σ∗ can be derived from a nonterminal symbol
A ∈ N if there is a derivation tree whose root node v is labelled by A and
dw(v) = w .
We call the set of all words that can be derived from the start symbol S
the language of G, denoted L(G).

Example

Derived word of the tree from preceding slide: abba

L(G) = {w ∈ Σ∗ | The number of a’s in w is the
same as the number of b’s in w}

Matthias Heizmann Program Verification Summer Term 2021 159 / 507

Example

See Exercise 3 on Exercise Sheet 05 for another context-free grammar and
a derivation tree.

Matthias Heizmann Program Verification Summer Term 2021 160 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex05.pdf

Program Verification
Summer Term 2021

Lecture 8: Boostan, cont’d

Matthias Heizmann

Wednesday 12th May

Matthias Heizmann Program Verification Summer Term 2021 161 / 507

Exercise: Construct a context-free grammar
GTInt = (ΣTInt,NTInt,PTInt, STInt) that generates the language of all FOL
terms for the vocabulary (VVar,VConst,VFun,VPred) such that

I VConst is the set of all non-empty words over the alphabet 0-9.

I VVar is the set of all non-empty words over the alphabet a-zA-Z0-9
that are not constant symbols.

I VFun is the set that contains
I the unary minus symbol - and
I the binary symbols +,-,*,div,mod,abs.

Matthias Heizmann Program Verification Summer Term 2021 162 / 507

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 163 / 507

In this subsection we use context-free grammars to define the syntax of
Boostan.

We start with a grammar for numbers and a grammar for variables and
extend these grammars incrementally until we have a grammar for
statements.

Please note that this is not the final version of Boostan. In the next
sections we will extend this section’s definition by arrays, assumptions
and nondeterministic assignments. TODO add link

Matthias Heizmann Program Verification Summer Term 2021 164 / 507

Grammar for Numbers

Problem: We would like to be able to represent every integer, but an
alphabet has to be finite.

Solution: Like SMT-LIB, we use digits 0 to 9, a decimal encoding and
(later) a unary minus to obtain negative numbers.

Additional requirement: We can tolerate leading zeros, but a number
should not be the empty word.

Gnum = (Σnum,Nnum,Pnum,Snum)

Σnum = {0, . . . , 9}
Nnum = {Xnum,Xnum′}
Pnum = {Xnum → 0Xnum′ | . . . |9Xnum′

Xnum′ → 0Xnum′ | . . . |9Xnum′ |ε}
Snum = Xnum

Matthias Heizmann Program Verification Summer Term 2021 165 / 507

Grammar for Variables

Requirements: Every alphanumeric sequence should be a variable but we
do not want to allow the emtpy word and the set of variables should be
disjoint from the set of numbers.

Gvar = (Σvar,Nvar,Pvar,Svar)

Σvar = Σnum ∪ {a, . . . , z, A, . . . Z}
Nvar = {Xvar ,Xvar ′}
Pvar = {Xvar → aXvar ′ | . . . |zXvar ′ |AXvar ′ | . . . |ZXvar ′

Xvar ′ → aXvar ′ | . . . |zXvar ′ |AXvar ′ | . . . |ZXvar ′ |0Xvar ′ | . . . |9Xvar ′ |ε}
Svar = Xvar

Matthias Heizmann Program Verification Summer Term 2021 166 / 507

Grammar for Integer Expressions

Requirements: We would like to have integer expressions that are very
similar to integer terms in SMT-LIB. We want an infix notation, we would
like to use the symbol / instead of div and we would like to use the
symbol % instead of mod.

GI = (ΣI,NI,PI, SI)

ΣI = {-, +, *, /, %, (,)} ∪ Σvar ∪ Σnum

NI = {Xiexpr} ∪ Nvar ∪ Nnum

PI = {Xiexpr → (Xiexpr)

Xiexpr → -Xiexpr

Xiexpr → Xiexpr+Xiexpr |Xiexpr-Xiexpr |Xiexpr*Xiexpr

Xiexpr → Xiexpr/Xiexpr |Xiexpr%Xiexpr

Xiexpr → Xvar

Xiexpr → Xnum} ∪ Pvar ∪ Pnum

SI = Xiexpr

Matthias Heizmann Program Verification Summer Term 2021 167 / 507

Example

See Exercise 2 on Exercise Sheet 07 for a derivation tree of GI

Matthias Heizmann Program Verification Summer Term 2021 168 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex07.pdf

Grammar for Boolean Expressions

Requirements: We would like to have Boolean expressions that are very
similar to Boolean terms in SMT-LIB (resp. formulas in FOL). We want
an infix notation, we would like to use the symbol ! instead of not (resp.
¬) and we would like to use the symbol && instead of and (resp. ∧) and
we would like to use the symbol || instead of or (resp. ∨) and we would
like to use the symbol ==> instead of => (resp. →).

GB = (ΣB,NB,PB,SB)

ΣB = {!, &&, ||, ==>, <, >, <=, >=} ∪ ΣI

NB = {Xbexpr} ∪ NI

PB = {Xbexpr → (Xbexpr)

Xbexpr → !Xbexpr

Xbexpr → Xbexpr&&Xbexpr |Xbexpr||Xbexpr |Xbexpr==>Xbexpr

Xbexpr → |Xiexpr<Xiexpr |Xiexpr>Xiexpr |Xiexpr<=Xiexpr |Xiexpr>=Xiexpr

Xbexpr → Xbexpr==Xbexpr |Xiexpr==Xiexpr

Xbexpr → Xvar

Xbexpr → true|false} ∪ PI

SB = Xbexpr

Matthias Heizmann Program Verification Summer Term 2021 169 / 507

Grammar for Boostan

Exercise 1 on Exercise Sheet 07.

Matthias Heizmann Program Verification Summer Term 2021 170 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex07.pdf

Terminology

We call

I a subword that is derived from Xvar a (program) variable,

I a subword that is derived from Xiexpr or Xbexpr an expression,

I a subword that is derived from Xstmt a (program) statement.

Matthias Heizmann Program Verification Summer Term 2021 171 / 507

Definition

A Boostan program is a triple P = (V , µ, T) where,

I V is a set of (program) variables,

I µ is a map that assigns each variable either Z or {true, false}
I T is a derivation tree for the start symbol SBoo in the Boostan grammar

such that the translation of each expression/type to an SMT term/sort is
well-sorted wrt. the map µ.

Given a variable v ∈ V we call µ(v) the domain of v .

Example

Pab = (Vab, µab, Tab) where

I Vab = {a, b},
I µ(a) = Z, µ(b) = Z, and

I Tab is the derivation tree
for the text on the right.

1 while (!(b == 0)) {

2 if (b >=0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

Matthias Heizmann Program Verification Summer Term 2021 172 / 507

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 173 / 507

Question: Do we really have to define all this stuff formally? Isn’t the
meaning of a statement intuitively clear to all of us?

Answers:

I Maybe. Depends on your intuition.

I A group of programmers has a problem if at least one programmer
has a different intuition.

I Let’s make up our own mind by looking at the following C code.

In all these examples we presume that x is a global variable.

I would guess that non-experts have to study the C standard13 for several hours in

order to give definite answers.

13E.g., ISO/IEC 9899:2011 informally called C11
Matthias Heizmann Program Verification Summer Term 2021 174 / 507

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Program Semantics: Motivation

Puzzle 1:

1 int x;

2 ...

3 x = 5;

4 int y = x++;

What is the value of y? 5? 6?

Puzzle 2:

1 int x;

2 ...

3 x = 5;

4 int y = f(x++);

1 int f(int a) {

2 return a + x;

3 }

What is the value of y? 10? 11? 12?

Matthias Heizmann Program Verification Summer Term 2021 175 / 507

Program Semantics: Motivation

Puzzle 3:

1 int x;

2 ...

3 int y = 23;

4 x = 5;

5 if (x++ >= 5 && x++ >= 6) {

6 y = 42;

7 }

What is the value of y? 23? 42?

Puzzle 4:

1 int x;

2 ...

3 int y = 23;

4 x = 5;

5 if (x++ >= 6 && x++ >= 6) {

6 y = 42;

7 }

What is the value of x? 5? 6? 7?

Matthias Heizmann Program Verification Summer Term 2021 176 / 507

Program Semantics: Motivation

Puzzle 5:

1 int f(int a) {

2 return a + x--;

3 }

1 int g(int a, int b) {

2 return a * b;

3 }

1 int x;

2 ...

3 x = 5;

4 int y = g(x++, f(x));

What is the value of y? 40? 60?

Matthias Heizmann Program Verification Summer Term 2021 177 / 507

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 178 / 507

There are various ways to define the semantics of a programming language14. We
will define the semantics of Boostan via relations. This definition of semantics is
sometimes called relational semantics.

14see https://en.wikipedia.org/wiki/Semantics_(computer_science)
Matthias Heizmann Program Verification Summer Term 2021 179 / 507

https://en.wikipedia.org/wiki/Semantics_(computer_science)

Idea: assign each statement a binary relation over program states.

Example

1 while (!(b == 0)) {

2 if (b >=0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

We would like to assign to the
program Pab a relation that
says “Variable a’s new value is
the sum of the old a and the ab-
solute value of the old b. The
new value of b is zero.”

Before we can define these relations we have to formally define a program
state.

Matthias Heizmann Program Verification Summer Term 2021 180 / 507

Program State

Definition (Program State)

Given a program P = (V , µ, T), a program state is a map that assigns each
variable v ∈ V a value of the variable’s domain. We use SV ,µ to denote the set of
all program states.

Example

The map that assigns the variable a to 23 and the variable a to 42 is an element
of SVab,µab

Notation
There are several notations for maps. We can e.g. write the state above

I as a set of pairs {(a, 23), (b, 42)}.
I Alternatively, we can write the pairs using an arrow symbol: {a 7→ 23, b 7→ 42}.
I Furthermore, we can give that state a name, e.g., s and define the state via the

equalities s(a) = 23 and s(b) = 42.

Matthias Heizmann Program Verification Summer Term 2021 181 / 507

Sets of Program States

Notation/Convention

We will use FOL formulas to denote sets of program states.

I The set of variables in our formulas will be the program variables.

I The constant symbols, function symbols, and predicate symbols are given by the
SMT theories.

I The model M is defined by the SMT theories.

I A formula ϕ denotes that set of all program states s such that for s = ρ the
evaluation [[ϕ]]M,ρ is true.

I We will introduce the notation for the set of states denoted by a formula later.

Example

I The formula a = 23 ∧ b = 42 denotes the singleton set
{{a 7→ 23, b 7→ 42}} ⊆ SVab,µab

I We will define a program semantics such that the set of states in which Pab can be
after executing the while loop “is” b = 0.

Matthias Heizmann Program Verification Summer Term 2021 182 / 507

Semantics of Expressions

Idea: assign each expression an SMT formula.

Given an expression expr, we define the semantics of the expression,
denoted [[expr]] as the SMT formula that is denoted by the same string.

Exception: The symbols that are not identical in Boostan and SMT formulas: integer
division and modulo.
The binary division function / of Boostan will be mapped to the binary division function div of SMT.

The binary modulo function % of Boostan will be mapped to the binary modulo function mod of SMT.

Example: [[2 * (x % 16)+42]] is 2 · (x mod 16) + 42.

Convention

Since Boostan expressions and SMT formulas are so closely related, we may omit
the double brackets and will often write expr instead of [[expr]].

Matthias Heizmann Program Verification Summer Term 2021 183 / 507

Semantics of the Assignment Statement

Given a program P = (V , µ, T) we define the semantics of an assignment
statement [[x := expr]] as the following binary relation over program
states.

{(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = [[expr]] ∧
∧

v∈V ,v 6=x

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Here, prime is the function that takes a state s and returns a map where
every variable x in the domain of s is replace by x ′. E.g.,
prime({a 7→ 23, b 7→ 42}) is {a′ 7→ 23, b′ 7→ 42}.

Example

[[a := a + 1]] is {(s1, s2) | [[a′ = a + 1∧ b′ = b]]M,ρ and ρ = s1 ∪ prime(s2)}

Matthias Heizmann Program Verification Summer Term 2021 184 / 507

Semantics of the Assignment Statement

Example (continued)

[[a := a + 1]] is {(s1, s2) | [[a′ = a + 1∧ b′ = b]]M,ρ and ρ = s1 ∪ prime(s2)}

E.g., the pair of states (s1, s2) where s1 = {a 7→ 5, b 7→ 1} and
s2 = {a 7→ 6, b 7→ 1} is an element of this relation, because for
ρ = s1 ∪ prime(s2) = {a 7→ 5, b 7→ 1, a′ 7→ 6, b′ 7→ 1 the evalution
[[a′ = a + 1 ∧ b′ = b]] is true.

Alternatively, we could write this relation as follows.
{(s1, s2) | s2(a) = s1(a) + 1 and s2(b) = s1(b)}.

Matthias Heizmann Program Verification Summer Term 2021 185 / 507

Program Verification
Summer Term 2021

Lecture 9: Boostan, cont’d

Matthias Heizmann

Monday 17th May

Matthias Heizmann Program Verification Summer Term 2021 186 / 507

Reminder: Relational Composition

Reminder: Relational Composition

The relational composition of two binary relations R1,R2 over a set X is
defined as follows.
R1 ◦ R2 := {(x , z) | there exists y ∈ X s.t. (x , y) ∈ R1 and (y , z) ∈ R2}

Example

Let R1 and R2 be the “strictly smaller” relation over Z (i.e.,
Ri = {(a, b) ∈ Z× Z | a < b}) then we have
R1 ◦ R2 = {(a, b) ∈ Z× Z | a + 1 < b}.

Matthias Heizmann Program Verification Summer Term 2021 187 / 507

Semantics of the Concatenation of Statements

Let st1 and st2 be two statements.

We define [[st1 st2]] as the relational composition [[st1]] ◦ [[st2]]

Example

See Exercise Sheet 08

Matthias Heizmann Program Verification Summer Term 2021 188 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex08-short.pdf

Reminder: (Convention)

We defined the formula/term [[expr]] for an expression expr. Since expressions
and formulas are very similar we will often omit the double brackets.

Notation

Given a program P = (V , µ, st) and a formula ϕ whose free variables are a
subset of V , then we will use {ϕ} to denote the set of states that are a
satisfying assignment for ϕ.

{ϕ} := {s ∈ SV,µ | [[ϕ]]M,ρ and ρ = s}

Warning

A formula in braces like e.g., {ϕ} denotes

I the set that contains the formula ϕ (you learned that notation in
school) and

I a set of states (as defined above).

We have to conclude from the context which meaning is meant.

Matthias Heizmann Program Verification Summer Term 2021 189 / 507

Semantics of the If-then-else Statement

Let expr be an expression and let st1 and st2 be two statements.

We define

[[if(expr){st1}else{st2}]] as
({expr} × SV,µ) ∩ [[st1]]
∪ ({!expr} × SV,µ) ∩ [[st2]]

Example

[[if (b>=0){b:=b-1} else {b:=b+1}]]

({b>=0} × SV,µ)︸ ︷︷ ︸
{(s,s′)|s(b) ≥ 0}

∩ [[b:=b-1]]︸ ︷︷ ︸
{(s,s′)|s

′(b) = s(b)− 1
and s′(a) = s(a)

}

∪ ({!b>=0} × SV,µ)︸ ︷︷ ︸
{(s,s′)|s(b) < 0}

∩ [[b:=b+1]]︸ ︷︷ ︸
{(s,s′)|s

′(b) = s(b) + 1
and s′(a) = s(a)

}

{(s, s ′) |
(
s(b) ≥ 0 and s′(b) = s(b)− 1

)
or
(
s(b) < 0 and s′(b) = s(b) + 1

)
and s′(a) = s(a) }

Matthias Heizmann Program Verification Summer Term 2021 190 / 507

On Exercise Sheet 06 we recalled the definitions of a binary relation,
reflexivity, transitivity and the reflexive transitive closure.

On these slides we will only repeat the definition of the reflexive
transitive closure.

Matthias Heizmann Program Verification Summer Term 2021 191 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex06.pdf

Reminder: Reflexive Transitive Closure

Reminder: Reflexive Transitive Closure
Given a binary relation R over the set X , the reflexive transitive closure, denoted
R∗, is the smallest relation such that R ⊆ R∗, R∗ is reflexive and R∗ is transitive.

Example

Let R1 and R2 be the “strictly smaller” relation over Z (i.e.,
Ri = {(a, b) ∈ Z× Z | a < b}) then we have
R1 ◦ R2 = {(a, b) ∈ Z× Z | a + 1 < b}.

We define the identity relation id := {(x , x) | x ∈ X} and for i ∈ N we define

R i =

{
id if i = 0

R ◦ R i−1 otherwise

Theorem

The reflexive transitive closure R∗ is
⋃
i∈N

R i

(Proof not given in this course.)

Matthias Heizmann Program Verification Summer Term 2021 192 / 507

Semantics of the While Statement

Let expr be an expression and let st be a statement.

We define [[while (expr){st}]] as

(({expr} × SV,µ) ∩ [[st]])∗ ∩ (SV,µ × {!expr})

Example

[[while (x>=0){x:=x-1;y:=y+1;}]]

Let us use R to denote ({x >= 0} × SV,µ) ∩ [[x := x − 1; y := y + 1]]︸ ︷︷ ︸
{(s,s′)|s(x)≥0∧s′(x)=s(x)−1∧s′(y)=s(y)+1}

R0 = id
R1 = {(s, s ′) | s(x) ≥ 0 and s ′(x) = s(x)− 1 and s ′(y) = s(y) + 1}
R2 = {(s, s ′) | s(x) ≥ 1 and s ′(x) = s(x)− 2 and s ′(y) = s(y) + 2}
...
R∗ = {(s, s ′) | s = s ′ or

(
s(x) > s ′(x) ≥ −1 and s ′(y)− s(y) = s(x)− s ′(x)

)
}

R∗ ∩ (SVµ × {!x>=0}) = { (s, s ′) |
(
s = s ′ and s ′(x) < 0

)
or
(
s(x) > s ′(x) = −1 and s ′(y)− s(y) = s(x) + 1

)
}

Matthias Heizmann Program Verification Summer Term 2021 193 / 507

Reminder

Idea: assign each statement a binary relation over program states.

Example

1 while (!(b == 0)) {

2 if (b >=0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

We would like to assign to the
program Pab a relation that
says “Variable a’s new value is
the sum of the old a and the ab-
solute value of the old b. The
new value of b is zero.”

On the next slide we compute the relation of the example above.

Matthias Heizmann Program Verification Summer Term 2021 194 / 507

[[b := b-1]] = { (s, s ′) | [[b′ = b − 1 ∧ a′ = a]]M,ρ = true and ρ = s ∪ prime(s ′) }
= { (s, s ′) | s ′(b) = s(b)− 1 and s ′(a) = s(a) }

[[b := b+1]] = { (s, s ′) | s ′(b) = s(b) + 1 and s ′(a) = s(a) }
[[a := a+1]] = { (s ′, s ′′) | s ′′(a) = s ′(a) + 1 and s ′′(b) = s ′(b) }

[[if/else]] = {b >= 0} × SV ,µ ∩ [[b := b-1]] ∪ {!b >= 0} × SV ,µ ∩ [[b := b+1]]

= { (s, s ′) | s ′(a) = s(a) and
(
(s(b) ≥ 0 and s ′(b) = s(b)− 1)

or (s(b) < 0 and s ′(b) = s(b) + 1)
)
}

[[loop body]] = { (s, s ′′) | ex. s ′ s.t. (s, s ′) ∈ [[if/else]], (s ′, s ′′) ∈ [[a := a+1]] }
= { (s, s ′′) | s ′′(a) = s(a) + 1 and

(
(s(b) ≥ 0 and s ′′(b) = s(b)− 1)

or (s(b) < 0 and s ′′(b) = s(b) + 1)
)
}

[[Pab]] =
(
({!(b == 0)} × SV ,µ) ∩ [[loop body]]

)∗ ∩ (SV,µ × {!!(b == 0)})
= { (s, s ′) | s(b) 6= 0 and s ′(a) = s(a) + 1 and |s ′(b)| = |s(b)| − 1 }∗

∩ (SV,µ × {!!(b == 0)})
= { (s, s ′) | s ′(a) + |s ′(b)| = s(a) + |s(b)| and |s ′(b)| ≤ |s(b)| }

∩ (SV,µ × {!!(b == 0)})
= { (s, s ′) | s ′(a) = s(a) + |s(b)| and s ′(b) = 0 }

Matthias Heizmann Program Verification Summer Term 2021 195 / 507

Example

See Exercise 1 on Exercise Sheet 07 for another example where we
compute the relation of a program.

Matthias Heizmann Program Verification Summer Term 2021 196 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex07-short.pdf

Outline of the Section on Boogie and Boostan

Boogie and Boostan
Context-Free Grammars
Syntax of Boostan
Excursus: The semantics of C
Relational Semantics of Boostan
Precondition-Postcondition Pairs

Matthias Heizmann Program Verification Summer Term 2021 197 / 507

How can we specify correctness of a Boostan program?

I Now: precondition-postcondition pairs.

I Later: extend Boostan by assert statements.

Matthias Heizmann Program Verification Summer Term 2021 198 / 507

Precondition-Postcondition Pairs

Given a program P = (V , µ, st) and a pair of sets of states ({ϕpre}, {ϕpost}) that
we call precondition-postcondition pair, we want to define the following formally.
Whenever we run st in some state where ϕpre holds and the execution of st has
come to an end, then we are in some state where ϕpost holds.

Definition

We say that program P satisfies the precondition-postcondition pair
({ϕpre}, {ϕpost}) if the inclusion post({ϕpre}, [[st]]) ⊆ {ϕpost} holds.

Example

1 while (!(b == 0)) {

2 if (b >= 0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

Does Pab satisfy the
precondition-postcondition
pair ({a · b ≥ 0}, {a ≥ 0})?

Matthias Heizmann Program Verification Summer Term 2021 199 / 507

Post Image

Definition

Post Image Given a binary relation R over the set X and a subset of
Y ⊆ X , the postimage of Y under R, denoted post(Y ,R), is the set
{x ∈ X | exists y ∈ Y such that (y , x) ∈ R}

Example

Let R be the “strictly smaller” relation over Z (i.e.,
R = {(a, b) ∈ Z× Z | a < b}) and Y = {y ∈ Z | y ≥ 5} then

post(Y ,R) = {y ∈ Z | y ≥ 6}

Matthias Heizmann Program Verification Summer Term 2021 200 / 507

Precondition-Postcondition Pairs

Example

1 while (!(b == 0)) {

2 if (b >= 0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

Does Pab satisfy the
precondition-postcondition
pair ({a ≥ 0}, {a ≥ 0})?

Check post({a ≥ 0}, [[st]])
?
⊆ {a ≥ 0} !

[[st]] = { (s, s ′) | s ′(a) = s(a) + |s(b)| and s ′(b) = 0 }

Example

See Exercise 2 on Exercise Sheet 08 for more examples.

Matthias Heizmann Program Verification Summer Term 2021 201 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex08.pdf

Program Verification
Summer Term 2021

Lecture 10: Hoare Proof System

Matthias Heizmann

Wednesday 19th May

Matthias Heizmann Program Verification Summer Term 2021 202 / 507

Section 7

Hoare Proof System

Matthias Heizmann Program Verification Summer Term 2021 203 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 204 / 507

In this section we will learn to prove correctness of programs.

In more detail:

I We set up a proof system that helps us to show that a program satisfies
a given precondition-postcondition pair.

I We will give a formal proof that the proof system is suitable for this task.

Matthias Heizmann Program Verification Summer Term 2021 205 / 507

Outline of the Section on Hoare Proof System

Introduction
Rules of the Hoare Proof System
Soundness of the Hoare Proof System

Matthias Heizmann Program Verification Summer Term 2021 206 / 507

At the beginning of this course, we used the NPL proof system to
derive valid implications of the form Γ � F .
In this section we will see a proof system that allows us analogously to
derive program statements together with a precondition-postcondition
pair such that the program satisfies this precondition-postcondition
pair.
This proof system was proposed by the computer scientist Tony Hoare
and hence we call it “Hoare proof system”.

Next,

1. we will first define the term Hoare triple,

2. see all rules of the Hoare proof system,

3. define the term “derivation” (analogously to a derivation in NPL),

4. and discuss then each rule in more detail.

Matthias Heizmann Program Verification Summer Term 2021 207 / 507

https://en.wikipedia.org/wiki/Tony_Hoare

Hoare Triple

Definition (Hoare Triple)

Given a set of states {ϕ}, a program statement st and a set of states {ψ},
we call the triple {ϕ}st{ψ} a Hoare triple.
We call a Hoare triple {ϕ}st{ψ} valid if st satisfies the
precondition-postcondition pair ({ϕ}, {ψ}).

TODO Example of a Hoare triple that is valid
TODO Example of a Hoare triple that is notvalid

Matthias Heizmann Program Verification Summer Term 2021 208 / 507

Proof Systems of this Course

NPL

proof system for deriving
valid PL implications

Γ � F

NFOL

proof system for deriving
valid FOL implications

Γ � ϕ

Hoare proof system
proof system for deriving

valid Hoare triples
{ϕ}st{ψ}

Matthias Heizmann Program Verification Summer Term 2021 209 / 507

Outline of the Section on Hoare Proof System

Introduction
Rules of the Hoare Proof System
Soundness of the Hoare Proof System

Matthias Heizmann Program Verification Summer Term 2021 210 / 507

Rules of the Hoare Proof System – Overview

Assignment axiom
(assig){ϕ[x 7→ expr]}x := expr;{ϕ}

Composition rule

(compo)
{ϕ1}st1{ϕ2} {ϕ2}st2{ϕ3}

{ϕ1}st1st2{ϕ3}
Strengthen precondition rule

(strepre)
{ϕ}st{ψ}
{ϕ′}st{ψ} if ϕ′ � ϕ

Weaken postcondition rule

(weakpos)
{ϕ}st{ψ}
{ϕ}st{ψ′} if ψ � ψ′

Conditional rule

(condi)
{ϕ ∧ expr} st1 {ψ} {ϕ ∧ ¬expr} st2 {ψ}
{ϕ} if(expr){st1}else{st2} {ψ}

While rule

(while)
{ϕ ∧ expr} st {ϕ}

{ϕ} while(expr){st} {ϕ ∧ ¬expr}

Matthias Heizmann Program Verification Summer Term 2021 211 / 507

Hore Proof System – Derivation

Definition

We define a derivation as a tree whose nodes are labelled by Hoare triples such
that the following holds.
If a node that is labelled by a Hoare triple {ϕn+1}stn+1{ψn+1} has children that
are labelled by Hoare triples {ϕ1}st1{ψ1} . . . {ϕn}stn{ψn}, then

{ϕ1}st1{ψ1} . . . {ϕn}stn{ψn}
{ϕn+1}stn+1{ψn+1}

must be an instance of some rule.

Note that this means in particular that leafs of the tree may only be labelled
instances of the assignment axiom.

Theorem (Soundness of the Hoare Proof System)

If there is a derivation whose root is labelled by {ϕ}st{ψ}, then the statement st
satisfies the precondition-postcondition pair ({ϕ}, {ψ}).

Proof. Later, in the last subsection of this section.
Matthias Heizmann Program Verification Summer Term 2021 212 / 507

The following four rules are sufficient to solve Exercise 3 of Exercise
Sheet 09.

I Assignment axiom

I Composition rule

I Strengthen precondition rule

I Weaken postcondition rule

We next discuss the remaining two rules in more detail.

Matthias Heizmann Program Verification Summer Term 2021 213 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex09.pdf
http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex09.pdf

Conditional Rule

(condi)
{ϕ ∧ expr} st1 {ψ} {ϕ ∧ ¬expr} st2 {ψ}
{ϕ} if(expr){st1}else{st2} {ψ}

Example

{ x=y
∧y≥0 }y:=y-1;{

(x≥0→y=x−1)
∧(x<0→y=x+1) } { x=y

∧¬(y≥0) }y:=y+1;{
(x≥0→y=x−1)
∧(x<0→y=x+1) }

{y = x}if(y>=0){y:=y-1;}else{y:=y+1;}{ (x≥0→y=x−1)
∧(x<0→y=x+1) }

Note that for both Hoare triples above the line the postcondition contains one

conjunct that seems to be useless. Indeed, these conjuncts are “only” needed to

obtain the postcondition for the Hoare triple below the line.

Matthias Heizmann Program Verification Summer Term 2021 214 / 507

While Rule

(while)
{ϕ ∧ expr} st {ϕ}

{ϕ} while(expr){st} {ϕ ∧ ¬expr}
We call the formula ϕ an inductive loop invariant.

Example

Task: Show that the while loop while(x>0){x:=x-1;y:=y+1;} satisfies
the precondition-postcondition pair ({z = x + y ∧ x ≥ 0}, {z = y}).
Solution:

{ z=x+y
∧x≥0 ∧ x > 0} x:=x-1;y:=y+1; { z=x+y

∧x≥0 }

{ z=x+y
∧x≥0 } while(x>0){x:=x-1;y:=y+1;} {

z=x+y
∧x≥0 ∧ ¬(x > 0)}

(while)

{ z=x+y
∧x≥0 } while(x>0){x:=x-1;y:=y+1;} {z = y}

(weakpos)

Typical for a derivation in which we use the while rule:

I We have to combine the while rule with the rules (strepre) and (weakpos).

I The conjunction of the negated condition and the inductive loop invariant restrict some
variable to a certain value (here x = 0).

Matthias Heizmann Program Verification Summer Term 2021 215 / 507

Hoare Proof System – Example

Task: prove that Pab satisfies the
precondition-postcondition pair ({a ≥ 42 ∧ b ≤ −23}, {a ≥ 53}).

We use ϕl as an abbreviation for the formula b ≤ 0→ a− b ≥ 53.

{
b≤0→

a−(b−1)≥52

}
b:=b-1;

{
b≤0→
a−b≥52

} (assig)

{ϕl∧b≥0}b:=b-1;
{

b≤0→
a−b≥52

} (strepre)

{
b≤0→

a−(b+1)≥52

}
b:=b+1;

{
b≤0→
a−b≥52

} (assig)

{ϕl∧¬b≥0}b:=b+1;
{

b≤0→
a−b≥52

} (strepre)

{ϕl}if (b>=0) {b:=b-1;} else {b:=b+1;}
{

b≤0→
a−b≥52

} (condi)
(∗)

{ϕl}if (b>=0) {b:=b-1;} else {b:=b+1;} a:=a+1;{ϕl}
(compo)

{(ϕl)∧¬(b=0)}if (b>=0) {b:=b-1;} else {b:=b+1;} a:=a+1;{ϕl}
(strepre)

{ϕl}while(!(b==0)){if (b>=0) {b:=b-1;} else {b:=b+1;} a:=a+1;}{(ϕl)∧¬¬(b=0)}
(while)

{a≥42∧b≤−23}while(!(b==0)){if (b>=0) {b:=b-1;} else {b:=b+1;} a:=a+1;}{(ϕl)∧¬¬(b=0)}
(strepre)

{a≥42∧b≤−23}while(!(b==0)){if (b>=0) {b:=b-1;} else {b:=b+1;} a:=a+1;}{a≥53}
(weakpos)

where (*) is the following subtree{
b≤0→

(a+1)−b≥53

}
a:=a+1;{ϕl}

(assig)

{
b≤0→
a−b≥52

}
a:=a+1;{ϕl}

(strepre)

Matthias Heizmann Program Verification Summer Term 2021 216 / 507

Hoare Proof System – Example

Example

See Exercise 5 on Exercise Sheet 09 for another examples of a derivation.

Matthias Heizmann Program Verification Summer Term 2021 217 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex09.pdf

Program Verification
Summer Term 2021

Lecture 11: Hoare Proof System cont’d

Matthias Heizmann

Monday 31th May

Matthias Heizmann Program Verification Summer Term 2021 218 / 507

Outline of the Section on Hoare Proof System

Introduction
Rules of the Hoare Proof System
Soundness of the Hoare Proof System

Matthias Heizmann Program Verification Summer Term 2021 219 / 507

This last subsection ist dedicated to the proof of the theorem that states that every
derived Hoare triple is indeed valid.

We follow the typical approch for proving a theorem about derivations of a proof
system:

I we state a property of proof rules (here: soundness)

I we prove that each proof rule has this property

I we conclude via induction that the theorem holds

Matthias Heizmann Program Verification Summer Term 2021 220 / 507

Reminder: Theorem (Soundness of the Hoare Proof System

If there is a derivation whose root is labelled by {ϕ}st{ψ} then the
statement st satisfies the precondition-postcondition pair ({ϕ}, {ψ})

Reminder: Definition (Derivation)

We define a derivation as a tree whose nodes are labelled by Hoare triples such that the
following holds. If a node that is labelled by a Hoare triple {ϕn+1}stn+1{ψn+1} has
children that are labelled by Hoare triples {ϕ1}st1{ψ1} . . . {ϕn}stn{ψn}, then

{ϕ1}st1{ψ1} . . . {ϕn}stn{ψn}
{ϕn+1}stn+1{ψn+1}

must be an instance of some rule.

Definition (Sound Rule)

We call a rule of the form
{ϕ1}st1{ψ1} . . . {ϕn}stn{ψn}

{ϕn+1}stn+1{ψn+1}
sound if the

following holds. If for all i ∈ {1, . . . n} the Hoare triple {ϕi}sti{ψi} is
valid, then the Hoare triple {ϕn+1}stn+1{ψn+1} is also valid.

Matthias Heizmann Program Verification Summer Term 2021 221 / 507

Soundness of the Assignment Axiom

Lemma (Soundness of the Assignment Axiom)

The Hoare triple {ϕ[x 7→ expr]} x:=expr; {ϕ} is valid.

Reminder

[[x:=expr]] is {(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = [[expr]] ∧
∧

v∈V ,v 6=x

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Proof. Let s ′ ∈ post({ϕ[x 7→ expr]}, [[x:=expr;]])

⇒ There exists s such that s ∈ {ϕ[x 7→ expr]} and (s, s ′) ∈ [[x:=expr;]]

⇒ There exists s such that for ρ = s ∪ prime(s ′)
[[ϕ[x 7→ expr] ∧ x ′ = [[expr]] ∧

∧
v∈V ,v 6=x

v ′ = v]]M,ρ is true

⇒ for ρ = s ′ the evalution [[ϕ]]M,ρ is true

⇒ s ′ ∈ {ϕ}

Matthias Heizmann Program Verification Summer Term 2021 222 / 507

Soundness of the Composition Rule

(compo)
{ϕ1}st1{ϕ2} {ϕ2}st2{ϕ3}

{ϕ1}st1st2{ϕ3}

Lemma (Soundness of the Composition Rule)

If the Hoare triple {ϕ1}st1{ϕ2} is valid and the Hoare triple {ϕ2}st2{ϕ3}
is valid, then the Hoare triple {ϕ1}st1st2{ϕ3} is valid.

Proof. See Exercise 1 on Exercise Sheet 10.

Matthias Heizmann Program Verification Summer Term 2021 223 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex10-short.pdf

Soundness of the Strengthen Precondition Rule

(strepre)
{ϕ}st{ψ}
{ϕ′}st{ψ}

if ϕ′ � ϕ

Lemma (Soundness of the Strengthen Precondition Rule)

If the Hoare triple {ϕ}st{ψ} is valid and the side condition ϕ′ � ϕ is valid,
then the Hoare triple {ϕ′}st{ψ} is valid.

Proof. Let s ′ ∈ post({ϕ′}, [[st]])

⇒ There exists s such that s ∈ {ϕ′} and (s, s ′) ∈ [[st]].

⇒ There exists s such that s ∈ {ϕ} and (s, s ′) ∈ [[st]].

⇒ s ′ ∈ post({ϕ}, st)

⇒ s ′ ∈ {ψ} (because post({ϕ}, st) ⊆ {ψ})

Matthias Heizmann Program Verification Summer Term 2021 224 / 507

Program Verification
Summer Term 2021

Lecture 12: Hoare Proof System cont’d, Ultimate Referee, Arrays

Matthias Heizmann

Wednesday 2nd June

Matthias Heizmann Program Verification Summer Term 2021 225 / 507

Soundness of the Weakening Postcondition Rule

(weakpos)
{ϕ}st{ψ}
{ϕ}st{ψ′}

if ψ � ψ′

Lemma (Soundness of the Weakening Postcondition Rule)

If the Hoare triple {ϕ}st{ψ} is valid and the side condition ψ � ψ′ is valid,
then the Hoare triple {ϕ}st{ψ′} is valid.

Proof. See Exercise 2 on Exercise Sheet 11.

Matthias Heizmann Program Verification Summer Term 2021 226 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex11.pdf

Soundness of the Conditional Rule

(condi)
{ϕ ∧ expr} st1 {ψ} {ϕ ∧ ¬expr} st2 {ψ}
{ϕ} if(expr){st1}else{st2} {ψ}

Lemma (Soundness of the Conditional Rule)

If the Hoare triple {ϕ ∧ expr} st1 {ψ} is valid and the Hoare triple
{ϕ ∧ ¬expr} st2 {ψ} is valid, then the Hoare triple
{ϕ} if(expr){st1}else{st2} {ψ} is valid.

Proof. See Exercise 3 on Exercise Sheet 11.

Matthias Heizmann Program Verification Summer Term 2021 227 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex11.pdf

Soundness of the While Rule

(while)
{ϕ ∧ expr} st {ϕ}

{ϕ} while(expr){st} {ϕ ∧ ¬expr}

Lemma (Soundness of the While Rule)

If the Hoare triple {ϕ ∧ expr} st {ϕ} is valid, then the Hoare triple
{ϕ} while(expr){st} {ϕ ∧ ¬expr} is valid.

Matthias Heizmann Program Verification Summer Term 2021 228 / 507

Proof. Let s ′ ∈ post({ϕ}, [[while (expr){st}]]), i.e. there exists an
s ∈ {ϕ} such that

(s, s ′) ∈ [[while (expr){st}]] =
(
({expr}×SV,µ)∩ [[st]]

)∗∩(SV,µ×{!expr}).

Therefore we know that s ′ ∈ {!expr}.

Let R =
(
({expr} × SV,µ) ∩ [[st]]

)
. It holds that R∗ =

⋃
n∈N0

Rn. Thus
there exists some n ∈ N0 such that (s, s ′) ∈ Rn.

By induction over n, we show that s ′ ∈ {ϕ}. By the observation above, it
follows that s ′ ∈ {ϕ ∧ ¬expr}. Thus we will have proven that

post({ϕ}, [[while (expr){st}]]) ⊆ {ϕ ∧ ¬expr}

and thus the While Rule is valid.

Matthias Heizmann Program Verification Summer Term 2021 229 / 507

n = 0 We have (s, s ′) ∈ R0 = id = {(s, s ′) ∈ SV,µ × SV,µ | s = s ′}.
Hence s ′ = s, and s ∈ {ϕ} by assumption.

n→ n + 1 Assume as induction hypothesis (IH) that for all (s̃, s̃ ′) ∈ Rn

with s̃ ∈ {ϕ}, it holds that s̃ ′ ∈ {ϕ}.

In our case, (s, s ′) ∈ Rn+1 = Rn ◦ R. Thus by definition of
composition, there exists some s ′′ such that (s, s ′′) ∈ Rn and
(s ′′, s ′) ∈ R.

I From the first tuple we derive by (IH) that s ′′ ∈ {ϕ}.
I From the second tuple and the definition of R, it follows

that s ′′ ∈ {expr} and (s ′′, s ′) ∈ [[st]].

Hence it follows that s ′ ∈ post({ϕ ∧ expr}, [[st]]). By
validity of the Hoare triple {ϕ ∧ expr} st {ϕ}, we have
post({ϕ ∧ expr}, [[st]]) ⊆ {ϕ}. Thus we conclude
s ′ ∈ {ϕ}.

�

Matthias Heizmann Program Verification Summer Term 2021 230 / 507

Soundness of the Hoare Proof System

Reminder: Theorem (Soundness of the Hoare Proof System

If there is a derivation whose root is labelled by {ϕ}st{ψ} then the
statement st satisfies the precondition-postcondition pair ({ϕ}, {ψ})

Proof. By definition a Hoare triple, {ϕ}st{ψ} is valid iff st satisfies the
precondition-postcondition pair ({ϕ}, {ψ}). We prove by induction over
the height of the derivation that the root node of a derivation is always
labelled by a valid Hoare triple.
Induction hypothesis (IH): For all derivations of height “≤ n” the root
node is labelled by a valid Hoare triple.
Base case n = 0.The derivation consists of a single node, labelled by a
Hoare triple {ϕ}st{ψ}. By definition of a derivation,

{ϕ}st{ψ}
has to be

an instance of some rule.The only rule of this form is the assignment
axiom. From the lemma on Soundness of the Assignment Axiom we
conclude that (IH) holds.

Matthias Heizmann Program Verification Summer Term 2021 231 / 507

Soundness of the Hoare Proof System

Induction step n n + 1.Let {ϕm+1}stm+1{ψm+1} be the label of the
root node and {ϕ1}st1{ψ1} . . . {ϕm}stm{ψm} be the labels of the
root node’s children.Each child is the root node of derivation of height
“≤ n” and from IH we conclude that it is labelled by a valid Hoare
triple.By definition of a derivation,

{ϕ1}st1{ψ1} . . . {ϕm}stm{ψm}
{ϕm+1}stm+1{ψm+1}

must be an instance of some rule.The rules of this form are the
composition rule, the strengthen precondition rule, the weaken
postcondition rule, the conditional rule, and the while rule.For each of
these rules one of the lemmas of this subsection lets us conclude that
{ϕm+1}stm+1{ψm+1} is a valid hoare triple and hence IH also holds for
n+1. �

Matthias Heizmann Program Verification Summer Term 2021 232 / 507

Section 8

Ultimate Referee

Matthias Heizmann Program Verification Summer Term 2021 233 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 234 / 507

In this section we will partially automize the task of checking correctness.

In this section, we will learn to

I systematically construct derivations in the Hoare proof system if suiteable loop
invariants are given

I use the Ultimate Referee tool check if given loop invariants are suiteable to
proof correctness

Matthias Heizmann Program Verification Summer Term 2021 235 / 507

Outline of the Section on Ultimate Referee

Guide for Finding a Derivation in the Hoare Proof System
Ultimate Referee

Matthias Heizmann Program Verification Summer Term 2021 236 / 507

I At a first glance it looked like constructing a derivation involves a lot of
guessing.

I After a closer look it became clear that there is only one rule for each kind of
statement and we only have to guess the loop invariant of the while rule and
where to put in strepre and weakpos rules.

I The following guide teaches us how we can reduce the guesswork to finding
suitable loop invariants for the while rule.

Note that however finding a suitable loop invariant is usually the hardest part
of the task. This guide just helps us to get the minor obstacles out of the way
and helps us to face the real challenge directly.

Matthias Heizmann Program Verification Summer Term 2021 237 / 507

Guide for Finding a Derivation in the Hoare Proof System

(assig)
{ϕ[x 7→ expr]}x := expr;{ϕ}

(compo)
{ϕ1}st1{ϕ2} {ϕ2}st2{ϕ3}

{ϕ1}st1st2{ϕ3}

(strepre)
{ϕ}st{ψ}
{ϕ′}st{ψ}

if ϕ′ � ϕ

(weakpos)
{ϕ}st{ψ}
{ϕ}st{ψ′}

if ψ � ψ′

(condi)
{ϕ ∧ expr} st1 {ψ} {ϕ ∧ ¬expr} st2 {ψ}
{ϕ} if(expr){st1}else{st2} {ψ}

(while)
{ϕ ∧ expr} st {ϕ}

{ϕ} while(expr){st} {ϕ ∧ ¬expr}

1. Guess “good” loop invariants for all
loops

2. Use (weakpos) only for equivalence
transformations
equivalence transformations are sometimes
needed to bring a formula syntactically in a
form that is required by (condi) or (while)

3. Process sequential composition
from right to left

4. Strengthen the precondition
(strictly) only before loop invariants

5. Apart from that: use the (strepre)
and (weakpos) rules only for
equivalence transformations

Matthias Heizmann Program Verification Summer Term 2021 238 / 507

Finding a derivation usually involves a lot of backtracking. We find out very late
that our loop invariants were not sufficient and have to start again.
I would be nice, if we could focus on the guesswork and let a computer do
everything that can be done algorithmically. (See tool in next subsection.)

Matthias Heizmann Program Verification Summer Term 2021 239 / 507

Outline of the Section on Ultimate Referee

Guide for Finding a Derivation in the Hoare Proof System
Ultimate Referee

Matthias Heizmann Program Verification Summer Term 2021 240 / 507

Ultimate Referee

Ultimate Referee is a tool for checking loop invariants.
I Takes as input:

I program where each loop is annoted by a formula (the potential loop
invariants) and

I a correctness specification (e.g., a precondition-postcondition pair)

Checks if there is some derivation in the Hoare proof system where
the formulas are loop invariants of the respective while rules.

I Implemented in the Ultimate framework

I Source code available at GitHub.

I Available via a web interface.

Matthias Heizmann Program Verification Summer Term 2021 241 / 507

Ultimate Referee and Boogie

1 procedure main(i,j : int)

returns (x,y : int)

2 requires true;

3 ensures (i == j) ==> (y == 0);

4 {

5 x := i;

6 y := j;

7 while (x != 0)

8 invariant y==0;

9 {

10 x := x - 1;

11 y := y - 1;

12 }

13 }

We use the keyword
invariant in each while loop
to state our candidate
invariants.

Here our candidate invariant is
invariant y == 0;

The output of the tool tells us
that our candidate invariant is
too strong:

Annotation is not valid for all loop-free paths from entry of

procedure main to loop head at line 7. One counterexample

starts in i=1, j=2 and ends in i=1, j=2, x=1, y=2.

Matthias Heizmann Program Verification Summer Term 2021 242 / 507

Ultimate Referee: Outlook

Ultimate Referee was not only build to support students who are constructing

derivations in the Hoare proof system...

I Check results of other verification tools.

I Assume you verify your code with verification tool XYZ. Verification
tool XYZ says that your code is correct.
Do you trust verification tool XYZ?

I Let verification tool XYZ output all loop invariants and double check
its result with Ultimate Referee.

Slightly different than the witness validation [3, 2] implemented in
Ultimate. The witness validator is rather lenient and tries to complete
proofs that are incomplete.

Matthias Heizmann Program Verification Summer Term 2021 243 / 507

Section 9

Arrays

Matthias Heizmann Program Verification Summer Term 2021 244 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 245 / 507

In this section we will add support for arrays to our formal setting.

Our goals:

I Learn about the SMT theory of arrays.

I Get familiar with Boogie’s notion of arrays (arrays as maps)

I Add support for arrays to the Boostan language.

I Add support for this revised Boostan language to the Hoare proof
system.

Matthias Heizmann Program Verification Summer Term 2021 246 / 507

Outline of the Section on Arrays

Motivation for Adding new Features
Arrays as Mathematical Objects
The SMT Theory of Arrays
Arrays in Boogie
Arrays in Boostan

Matthias Heizmann Program Verification Summer Term 2021 247 / 507

The next slides motivates the need for an SMT theory of arrays.

The diagram contrasts the approach of this lecture with the approach of the
Ultimate Automizer verification tool (which we discuss later in this course).

I The verification algorithms of the Ultimate Automizer tool are not
(directly) implemented for high-level programming languages. Instead,
the tool translates high-level programming languages to the Boogie
language. Boogie was designed such that it is closely related to
SMT-LIB. Hence, the tool can delegate several sub-tasks to SMT solvers.

I In this lecture, we do not study high-level programming languages.
Instead, we take basic features of high-level programming languages and
add support for these features to the Boostan language. We design
Boostan such that it is closely related to SMT. Hence, we can resort to
SMT while defining its semantics.

Arrays are an basic feature of high-level programming languages, hence we
want to have SMT support for arrays.

Matthias Heizmann Program Verification Summer Term 2021 248 / 507

Arrays – Motivation

Approach of the Ultimate Automizer verification tool.

High-level
imperative

programming
language.
E.g., C.

Boogie SMT
translate

do
computations

Approach in this lecture.

High-level
imperative

programming
language.
E.g., C.

Boostan SMT

take
basic features

define
semantics

We need logical formulas whose models are (also) arrays!

Matthias Heizmann Program Verification Summer Term 2021 249 / 507

Outline of the Section on Arrays

Motivation for Adding new Features
Arrays as Mathematical Objects
The SMT Theory of Arrays
Arrays in Boogie
Arrays in Boostan

Matthias Heizmann Program Verification Summer Term 2021 250 / 507

In school you did some math were the objects were numbers (e.g., natural
numbers, reals) or shapes (triangles, circles).

Now, we would now like to do some math were the studied objects are
array-like. On one hand, the objects have to be so rich that they are suitable
to model arrays of computer programs. On the other hand, the objects have
to be so simple that the reasoning can be implemented in tools like e.g., SMT
solvers.

Matthias Heizmann Program Verification Summer Term 2021 251 / 507

Problem: Arrays are modifiable.

Ideas: Consider an array as a map. Consider an array update as an operation
that takes a map and returns a modified map.

Example (that demonstrates this idea)

I Let ffoo be the map such that ffoo(x) = 0 for all x .

I ffoo represents a zero-initialized array.

I After writing the number 23 at index 5 that array is represented by the map fbar

where fbar (x) =

{
23 if x = 5

0 otherwise

We use two functions to implement this idea.

select
I binary function

I 1st argument: a map

I 2nd argument: element of map’s domain

I returns: value of map at that position

I e.g. select(ffoo , 5) = 0

I e.g. select(fbar , 5) = 23

store
I ternary function

I 1st argument: a map

I 2nd argument: element of map’s domain

I 3rd argument: new value at that position

I returns: updated map

I e.g. store(ffoo , 5, 23) = fbar

Matthias Heizmann Program Verification Summer Term 2021 252 / 507

Next we compare the theory of arrays that we are going to define with
the theory of integers.

Note that the “absolute value” is a function in models of the theory of
integers, but can also be an element of the interpretation domain in the
theory of arrays.

Matthias Heizmann Program Verification Summer Term 2021 253 / 507

Theory of Arrays in Comparison to the Theory of Integers

Theory of Integers Theory of Arrays

Values

Numbers, e.g,

I 23

I 42

I -17

1-ary maps, e.g.,

I ffoo
I fbar
I absolute value | · |

Functions

I +

I -

I *

I abs

I select

I store

Matthias Heizmann Program Verification Summer Term 2021 254 / 507

Outline of the Section on Arrays

Motivation for Adding new Features
Arrays as Mathematical Objects
The SMT Theory of Arrays
Arrays in Boogie
Arrays in Boostan

Matthias Heizmann Program Verification Summer Term 2021 255 / 507

Analogously to our introduction of various SMT theories in the section
on First-Order Theories we introduce the theory of arrays.

As an exercise, we should ask ourselves:
How can we define the theory of arrays formally? Which symbols and
axioms are needed?

Matthias Heizmann Program Verification Summer Term 2021 256 / 507

Theory of Arrays Tarr

Signature:
Σarr : {select, store, =}

Axioms:

1. the axioms of reflexivity, symmetry, and transitivity of T=

2. array congruence

∀a, i , j . i = j → select(a, i) = select(a, j)

3. read-over-write 1

∀a, v , i , j . i = j → select(store(a, i , v), j) = v

4. read-over-write 2

∀a, v , i , j . i 6= j → select(store(a, i , v), j) = select(a, j)

5. extensionality

∀a, b. (∀i . select(a, i) = select(b, i))↔ a = b

Matthias Heizmann Program Verification Summer Term 2021 257 / 507

The SMT-LIB definition of the theory of arrays can be found at the SMT-LIB
website 15 We will not discuss details and only look at an example (next slide).

Reminder: SMT-LIB is based on a sorted version of first-order logic. Hence, we have
to specify a sort for each variable.
The sort of an array whose indices are integers and whose values are Booleans is
denoted by (Array Int Bool).

See Exercise Sheet 11 for more examples.

15http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml
Matthias Heizmann Program Verification Summer Term 2021 258 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex11.pdf
http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml

Arrays in SMT-LIB

Some SMT formula with symbols from the theory of arrays.

a = store(b, k, v) ∧ select(a, i) 6= select(b, i) ∧ select(a, j) 6= select(b, j) ∧ i 6= j

Some SMT script for checking satisfiability of this formula.

1 (set-logic QF_ALIA)

2 (declare-fun i () Int)

3 (declare-fun j () Int)

4 (declare-fun k () Int)

5 (declare-fun v () Int)

6 (declare-fun a () (Array Int Int))

7 (declare-fun b () (Array Int Int))

8 (assert (= b (store a k v)))

9 (assert (not (= (select b i) (select a i))))

10 (assert (not (= (select b j) (select a j))))

11 (check-sat)

12 (get-value (k i j))

13 (assert (not (= j i)))

14 (check-sat)

Matthias Heizmann Program Verification Summer Term 2021 259 / 507

Program Verification
Summer Term 2021

Lecture 13: Arrays cont’d

Matthias Heizmann

Monday 7th June

Matthias Heizmann Program Verification Summer Term 2021 260 / 507

Outline of the Section on Arrays

Motivation for Adding new Features
Arrays as Mathematical Objects
The SMT Theory of Arrays
Arrays in Boogie
Arrays in Boostan

Matthias Heizmann Program Verification Summer Term 2021 261 / 507

Arrays in Boogie are very similar to arrays in SMT-LIB. An array is a (total) map
that assigns each element of the index domain and element of the value domain.

In this course we will use examples to briefly demonstrate the syntax and semantics
of Boogie’s arrays, details can be found in the Boogie specification16 [13].

See Exercise Sheet 11 and Exercise Sheet 12 for more examples.

16
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Matthias Heizmann Program Verification Summer Term 2021 262 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex11-short.pdf
http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex12.pdf
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

Arrays in Boogie

Implementation of an insertion sort17 algorithm in Boogie:

1 procedure InsertionSort(lo : int , hi : int , a : [int]int) returns

(ar : [int]int)

2 {

3 var i, j, temp : int;

4 ar := a;

5 i := lo+1;

6 while (i <= hi) {

7 j := i;

8 while (j > lo && ar[j] < ar[j-1])

9 {

10 temp := ar[j-1];

11 ar[j-1] := ar[j];

12 ar[j] := temp;

13 j := j-1;

14 }

15 i := i+1;

16 }

17 }

17https://en.wikipedia.org/wiki/Insertion_sort
Matthias Heizmann Program Verification Summer Term 2021 263 / 507

https://en.wikipedia.org/wiki/Insertion_sort

Modeling Memory via Arrays

Feature of many high-level languages: Pointers / References

Simplest way to model in Boogie: global array mem : [int]int

C Boogie SMT

pointer dereference
*ptr

array access
mem[ptr] select(mem, ptr)

pointer assignment
*ptr = expr;

array assignment
mem[ptr] := expr;

mem′ =
store(mem, ptr , expr)

reference assignment
ptr2 = ptr;

assignment
ptr2 := ptr; ptr2 ′ = ptr

Matthias Heizmann Program Verification Summer Term 2021 264 / 507

Outline of the Section on Arrays

Motivation for Adding new Features
Arrays as Mathematical Objects
The SMT Theory of Arrays
Arrays in Boogie
Arrays in Boostan

Matthias Heizmann Program Verification Summer Term 2021 265 / 507

In this subsection we will add support for arrays to the Boostan language.

Matthias Heizmann Program Verification Summer Term 2021 266 / 507

Arrays in Boostan

What do we have to extend?
I Syntax

I expressions
I assignment statement

I Semantics
I expressions
I assignment statement

I Rules of the Hoare proof system

I Soundness proof for the Hoare proof system

Matthias Heizmann Program Verification Summer Term 2021 267 / 507

Grammar for Boostan with Array Assignment Statement

GBoo = (ΣBoo,NBoo,PBoo,SBoo)

ΣBoo = {while, if, else, {, }} ∪ ΣB

NBoo = {Xstmt,Xlhs} ∪ NB

PBoo = {Xstmt → Xlhs:=Xexpr;

Xstmt → XstmtXstmt

Xstmt → if (Xexpr){Xstmt} else {Xstmt}
Xstmt → while (Xexpr){Xstmt}
Xlhs → Xvar[Xexpr]

Xlhs → Xvar} ∪ PB

SBoo = Xstmt

Matthias Heizmann Program Verification Summer Term 2021 268 / 507

Semantics of the Array Assignment Statement

Reminder (Assignment Statement)

[[x := expr;]] is {(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = expr ∧
∧

v∈V ,v 6=x
v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Given a program P = (V , µ, T) we define the semantics of an array
assignment statement [[a[i] := expr;]] as the following binary relation
over program states.

{(s1, s2) ∈ SV,µ×SV,µ | [[a′ = store(a, i , expr) ∧
∧

v∈V ,v 6=a

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Matthias Heizmann Program Verification Summer Term 2021 269 / 507

An Array Assignment Axiom for the Hoare Proof System

Reminder (Assignment Axiom)

(assig)
{ϕ[x 7→ expr]} x:=expr; {ϕ}

(arrassig)
{ϕ[a 7→ store(a,i,expr)]} a[i]:=expr; {ϕ}

Matthias Heizmann Program Verification Summer Term 2021 270 / 507

Soundness of the Array Assignment Axiom

Lemma (Soundness of the Array Assignment Axiom)

The Hoare triple {ϕ[a 7→ store(a, i , expr)]} a[i]:=expr; {ϕ} is valid.

Reminder
[[a[i]:=expr;]] is
{(s1, s2) ∈ SV,µ × SV,µ | [[a′ = store(a, i , expr) ∧

∧
v∈V ,v 6=a

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Proof. Analogously to the proof for the assignment statement.

Matthias Heizmann Program Verification Summer Term 2021 271 / 507

Section 10

Boogie and Boostan – Part 2

Matthias Heizmann Program Verification Summer Term 2021 272 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 273 / 507

In this section we will discuss nondeterminism and assumptions

Our goals:

I Learn that we can model input and other kinds of nondeterminism via
Boogie’s havoc statement.

I Add support for the havoc statement to Boostan.

I Learn that we can model additional assumptions via Boogie’s assume
statement.

I Add support for the assume statement to Boostan.

Matthias Heizmann Program Verification Summer Term 2021 274 / 507

Reminder: Many verification tools do not apply their algorithms directly to
the input language. Instead, they translate the input program to a program
in a language with a sparse syntax (e.g., Boogie) and apply the verification
algorithms on the translation output. Hence, language like Boogie must allow
one to model all features of high level languages.

We take that into account and wa add features to Boostan such that we are in
principle able to model high-level languages.

Matthias Heizmann Program Verification Summer Term 2021 275 / 507

Outline of the Section on Boogie and Boostan – Part 2

Nondeterminism and Havoc statement

Matthias Heizmann Program Verification Summer Term 2021 276 / 507

Nondeterminism

Typical feature of computer programs: input

I user input

I network input

I input from other hardware

How can we model input in a general/abstract way?

I In some sense we already do ...

I Variables are not initialized, may have any value at the beginning

I Can we just use one auxiliary variable per user input?

I No. Input may occur inside a loop.

Matthias Heizmann Program Verification Summer Term 2021 277 / 507

Modelling Input in Programs

C program:

1 unsigned char x = 0;

2 while (x < ’1’ || x > ’9’) {

3 println("Please input a number from 1 to 9.")

4 x = readchar ();

5 }

6 // work with input x

Boogie program:

1 var x : int;

2 x := 0;

3 while (x < 49 || x > 57) {

4 // println (" Please input a number from 1 to 9.")

5 havoc x;

6 assume 0 <= x && x <= 255;

7 }

8 // work with input x

Section 9.2 of the Boogie specification18 explains the assume statement.
18K. Rustan M. Leino. “This is Boogie 2”. 2008.

Matthias Heizmann Program Verification Summer Term 2021 278 / 507

Nondeterminism in Boogie

Modelling input in Boogie: In each iteration, an arbitrary value is assigned
to the variable x.

1 while (x == 3 * y) {

2 y := x;

3 havoc x;

4 }

Question: Does this program satisfy the precondition-postcondition pair
({y = 1}, {y ≤ 81})?

⇒ Let’s ask Ultimate Automizer!

Section 9.4 of the Boogie specification19 explains the havoc statement.

19K. Rustan M. Leino. “This is Boogie 2”. 2008.
Matthias Heizmann Program Verification Summer Term 2021 279 / 507

Nondeterminism in Boostan

What do we have to extend?

I Syntax

I Semantics

I Rules of the Hoare proof system

I Soundness proof for the Hoare proof system

Matthias Heizmann Program Verification Summer Term 2021 280 / 507

Grammar for Boostan with Havoc Statement

GBoo = (ΣBoo,NBoo,PBoo,SBoo)

ΣBoo = {while, if, else, {, }, havoc} ∪ ΣB

NBoo = {Xstmt,Xlhs} ∪ NB

PBoo = {Xstmt → Xlhs:=Xexpr;

Xstmt → havoc Xvar;

Xstmt → XstmtXstmt

Xstmt → if (Xexpr){Xstmt} else {Xstmt}
Xstmt → while (Xexpr){Xstmt}
Xlhs → Xvar[Xexpr]

Xlhs → Xvar} ∪ PB

SBoo = XBoo

Matthias Heizmann Program Verification Summer Term 2021 281 / 507

Semantics of the Havoc Statement

Reminder (Assignment Statement)

[[x := expr;]] is {(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = expr ∧
∧

v∈V ,v 6=x
v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Given a program P = (V , µ, T) we define the semantics of a havoc
statement [[havoc x;]] as the following binary relation over program
states.

{(s1, s2) ∈ SV,µ × SV,µ | [[
∧

v∈V ,v 6=x

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Matthias Heizmann Program Verification Summer Term 2021 282 / 507

Program Verification
Summer Term 2021

Lecture 14: Havoc, Assume, CFGs

Matthias Heizmann

Wednesday 9th June

Matthias Heizmann Program Verification Summer Term 2021 283 / 507

A Havoc Axiom for the Hoare Proof System

Reminder (Assignment Axiom)

(assig)
{ϕ[x 7→ expr]} x:=expr; {ϕ}

(havoc)
{∀x . ϕ} havoc x; {ϕ}

Matthias Heizmann Program Verification Summer Term 2021 284 / 507

Soundness of the Havoc Axiom

Lemma (Soundness of the Havoc Axiom)

The Hoare triple {∀x . ϕ} havoc x; {ϕ} is valid.

Reminder

[[havoc x;]] is {(s1, s2) ∈ SV,µ × SV,µ | [[
∧

v∈V ,v 6=x

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Proof. Let s ′ ∈ post({∀x .ϕ}, [[havoc x;]])

⇒ There exists s such that s ∈ {∀x .ϕ} and (s, s ′) ∈ [[havoc x;]]

⇒ There exists s such that for ρ = s ∪ prime(s ′)
[[(∀x .ϕ) ∧

∧
v∈V ,v 6=x

v ′ = v]]M,ρ is true

⇒ There exists s such that for ρ = s ∪ prime(s ′)
[[(∀x .ϕ)]]M,ρ is true and for all v ∈ V \ {x}, we have s(v) = s ′(v)

⇒ for ρ = s ′ the evaluation [[ϕ]]M,ρ is true

⇒ s ′ ∈ {ϕ}
Matthias Heizmann Program Verification Summer Term 2021 285 / 507

Assumptions

How can we restrict input to certain values?

Not a feature of programming languages.

Matthias Heizmann Program Verification Summer Term 2021 286 / 507

Modelling Input in Programs

C program:

1 unsigned char x = 0;

2 while (x < ’1’ || x > ’9’) {

3 println("Please input a number from 1 to 9.")

4 x = readchar ();

5 }

6 // work with input x

Boogie program:

1 var x : int;

2 x := 0;

3 while (x < 49 || x > 57) {

4 // println (" Please input a number from 1 to 9.")

5 havoc x;

6 assume 0 <= x && x <= 255;

7 }

8 // work with input x

Section 9.2 of the Boogie specification18 explains the assume statement.
18K. Rustan M. Leino. “This is Boogie 2”. 2008.

Matthias Heizmann Program Verification Summer Term 2021 287 / 507

Assumptions in Boostan

What do we have to extend?

I Syntax

I Semantics

I Rules of the Hoare proof system

I Soundness proof for the Hoare proof system

Matthias Heizmann Program Verification Summer Term 2021 288 / 507

Grammar for Boostan with Assume Statement

GBoo = (ΣBoo,NBoo,PBoo,SBoo)

ΣBoo = {while, if, else, {, }, havoc, assume} ∪ ΣB

NBoo = {Xstmt,Xlhs} ∪ NB

PBoo = {Xstmt → Xlhs:=Xexpr;

Xstmt → havoc Xvar;

Xstmt → assume Xexpr;

Xstmt → XstmtXstmt

Xstmt → if (Xexpr){Xstmt} else {Xstmt}
Xstmt → while (Xexpr){Xstmt}
Xlhs → Xvar[Xexpr]

Xlhs → Xvar} ∪ PB

SBoo = XBoo

Matthias Heizmann Program Verification Summer Term 2021 289 / 507

Semantics of the Assume Statement

Given a program P = (V , µ, T) we define the semantics of an assume
statement [[assume expr;]] as the following binary relation over program
states.

{(s1, s2) ∈ SV,µ × SV,µ | s1 = s2 and s2 ∈ {expr}}

Alternatively

{(s1, s2) ∈ SV,µ × SV,µ | [[expr ∧
∧

v∈V
v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Matthias Heizmann Program Verification Summer Term 2021 290 / 507

An Assume Axiom for the Hoare Proof System

(assu)
{ϕ} assume expr; {ϕ ∧ expr}

Matthias Heizmann Program Verification Summer Term 2021 291 / 507

Soundness of the Assume Axiom

Lemma (Soundness of the Assume Axiom)

The Hoare triple {ϕ} assume expr; {ϕ ∧ expr} is valid.

Reminder
[[assume expr;]] is {(s1, s2) ∈ SV,µ × SV,µ | s1 = s2 and s1 ∈ {expr}}

Proof. Let s ′ ∈ post({ϕ}, [[assume expr;]])

⇒ There exists s such that s ∈ {ϕ} and (s, s ′) ∈ [[assume expr;]]

⇒ There exists s such that s ∈ {ϕ} and s = s ′ and s ∈ {expr}
⇒ s ′ ∈ {ϕ} and s ′ ∈ {expr}
⇒ s ′ ∈ {ϕ ∧ expr}

Matthias Heizmann Program Verification Summer Term 2021 292 / 507

Program Verification
Summer Term 2021

Lecture 15: Control-flow graphs

Matthias Heizmann

Monday 14th June

Matthias Heizmann Program Verification Summer Term 2021 293 / 507

Section 11

Control-flow graphs

Matthias Heizmann Program Verification Summer Term 2021 294 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 295 / 507

In this section we will see a new formalism for computer programs, namely control-flow
graphs. Control-flow graphs20 are a well-established concept in computer science for which
several different but very similar notions exists.

Goals of this section are

I fix our notation of a control-flow graph and the corresponding terminology

I give a characterization of program correctness (in the sense of safety,
precondition-postcondition pairs)

I see (again) an example of a complex object is defined by (structural) induction over a
context-free grammar

I see (again) an example of a complex proof that is given by (structural) induction over
a context-free grammar

20https://en.wikipedia.org/wiki/Control-flow_graph
Matthias Heizmann Program Verification Summer Term 2021 296 / 507

https://en.wikipedia.org/wiki/Control-flow_graph

Outline of the Section on Control-flow graphs

Motivation
Formal Definition
Program Executions
Proof of the Error Execution Theorem

Matthias Heizmann Program Verification Summer Term 2021 297 / 507

From the Guide for Finding a Derivation in the Hoare Proof System
and the UltimateEliminator tool we learned that it is (at least
conceptually) rather easy to give a proof once we found suitable loop
invariants.
In the remaining weeks we will see techniques for finding loop
invariants but in order to do so we need a new formalism for programs:
the control-flow graph.

Matthias Heizmann Program Verification Summer Term 2021 298 / 507

Relational Semantics vs. Semantics based on control-flow
graphs

Relational semantics

I conceptually simple

I suitable for defining the Hoare proof system

I intractable for algorithms (e.g., because we cannot compute the
reflexive transitive closure)

Semantics based on control-flow graphs

I more suitable for verifiation algorithms that do not need loop
invariants

I uses relational semantics for “simple statements”

On the next slide, we see an example of a control-flow graph and we probably
already have an idea what a control-flow graph should be.

Question: how can we introduce the notion of a control-flow graph formally?

Matthias Heizmann Program Verification Summer Term 2021 299 / 507

Example: Control-flow Graph

Code of program Pab

1 while (!(b == 0)) {

2 if (b >= 0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

Control-flow graph of Pab

`1

`2

`5`3

`7

`8

!(b==0)

(b>=0)

b:=b-1

!(b>=0)

b:=b+1

a:=a+1

!!(b==0)

Matthias Heizmann Program Verification Summer Term 2021 300 / 507

Outline of the Section on Control-flow graphs

Motivation
Formal Definition
Program Executions
Proof of the Error Execution Theorem

Matthias Heizmann Program Verification Summer Term 2021 301 / 507

Definition (Control-Flow Graph)

A control-flow graph is a tuple G = (Loc,∆, `init, `ex) where

I Loc is a finite set whose elements we call locations,
I ∆ is a ternary relation that consists of triples (`, st, `′) where ` and `′

are locations and st is either
I an assignment statement,
I an array assignment statement,
I a havoc statement, or
I an assume statement.

I `init is a location that we call the initial location

I `ex is a location that we call the exit location

Definition (Control-Flow Graph for a Program)

Given a program P = (V , µ, st) we say that a control-flow graph G is a
control-flow graph for P if G is a control-flow graph for st which we define
inductively on the next slides.

Matthias Heizmann Program Verification Summer Term 2021 302 / 507

Control-Flow Graph for Simple Statements

Definition:

Let st be

I an assignment statement,

I an array assignment statement,

I a havoc statement, or

I an assume statement,

then G = (Loc,∆, `init, `ex) such that

I Loc = {`init, `ex},
I ∆ = {(`init, st, `ex)}, and

I `init 6= `ex

is a control-flow graph for st.

Example:

`23

`24

havoc x

Matthias Heizmann Program Verification Summer Term 2021 303 / 507

Notational Conventions

In order to improve legibility of a control-flow graph, we typically

I put a gray box around statements,

I omit the “assume” prefix of assume statements (i.e., write b>=0

instead of assume b>=0), and

I omit the semicolon at the end of (array-)assume statements and
havoc statements.

Control-Flow Graphs are Unique up to Locations

We do not define “the” control-flow graph for a statement, we only
define when a graph is “a” control-flow graph of a given statement. We
do so because we do not want to fix a naming scheme for the locations.
Using the terminology of graph theory we can say that all control-flow
graphs for a given statement are isomorphic to each other.

Matthias Heizmann Program Verification Summer Term 2021 304 / 507

Control-Flow Graph for a Sequential Composition

Let G 1 = (Loc1,∆1, `1
init, `

1
ex) be a control-flow graph for st1,

let G 2 = (Loc2,∆2, `2
init, `

2
ex) be a control-flow graph for st2

such that Loc1 and Loc2 are disjoint.

Let G 3 = (Loc3,∆3, `3
init, `

3
ex) be the modification of G 2 where we replaced every

occurrence of `2
init by `1

ex, i.e.,

I Loc3 = Loc2\{`2
init} ∪ {`1

ex}
I ∆3 = {(`1

ex, st, `
′) | (`2

init, st, `
′) ∈ ∆2}

∪ {(`, st, `1
ex) | (`, st, `2

init) ∈ ∆2}
∪ {(`, st, `′) | (`, st, `′) ∈ ∆2 s.t. ` 6= `2

init and `′ 6= `2
init}

I `3
init = `1

ex

I `3
ex = `2

ex

Then G = (Loc1 ∪ Loc3,∆1 ∪∆3, `1
init, `

3
ex) is a control-flow graph for the

sequential composition st1st2.

Matthias Heizmann Program Verification Summer Term 2021 305 / 507

Control-Flow Graph for a Conditional Statement

Let G 1 = (Loc1,∆1, `1
init, `

1
ex) be a control-flow graph for st1,

let G 2 = (Loc2,∆2, `2
init, `

2
ex) be a control-flow graph for st2

such that Loc1 and Loc2 are disjoint.

The definition of a control-flow graph for the conditional statement

if(expr){st1} else {st2}

is the task of Exercise 1 on Exercise Sheet 14.

Matthias Heizmann Program Verification Summer Term 2021 306 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex14-short.pdf

Control-Flow Graph for a While Statement

Let G = (Loc,∆, `init, `ex) be a control-flow graph for st.
Let `wex be a location that does not occur in Loc.

Then Gw = (Locw ,∆w , `winit, `
w
ex) such that

I Locw = Loc ∪ {`wex}
I ∆w = ∆ ∪ {(`ex, assume expr , `init)} ∪ {(`ex, assume !expr , `wex)}
I `winit = `ex

I `wex = `wex

is a control-flow graph for the statement

while (expr) { st }.

Matthias Heizmann Program Verification Summer Term 2021 307 / 507

Example: Control-flow Graph

Code of program Pab

1 while (!(b == 0)) {

2 if (b >= 0) {

3 b := b - 1;

4 } else {

5 b := b + 1;

6 }

7 a := a + 1;

8 }

Control-flow graph of Pab

`1

`2

`5`3

`7

`8

!(b==0)

(b>=0)

b:=b-1

!(b>=0)

b:=b+1

a:=a+1

!!(b==0)

Matthias Heizmann Program Verification Summer Term 2021 308 / 507

Outline of the Section on Control-flow graphs

Motivation
Formal Definition
Program Executions
Proof of the Error Execution Theorem

Matthias Heizmann Program Verification Summer Term 2021 309 / 507

Control-Flow and Data
The control-flow graph is only an alternative syntactic representation
of a program. In order to get also an alternative view on the program’s
behavior we will make several new definitions in this subsection.

The graph structure of the control-flow graph captures only one aspect
of a program, namely it defines the way in which the programmer
arranged the statements in the code. This graph structure allows us
the specify where the program currently is but this formalism does not
(directly) allow us to talk about the data that is stored in the
program’s variables.

Our definition of a program state is focussed solely on the program’s
data but it is not sufficient to specify the situation in which a program
currently is, because the state does not provide information about the
next statements that can be executed.

We will next give several definitions that combine control-flow apects
and data aspects of a program and allow us to talk about program
correctness in our control-flow graph-based formalism.

Matthias Heizmann Program Verification Summer Term 2021 310 / 507

Program Configuration and Execution

Let P = (V , µ, st) be a program and G = (Loc,∆, `init, `ex) be a
control-flow graph for P.

Definition (Program Configuration)

We call a pair (`, s) a program configuration of P if ` ∈ Loc is a location
and s is a state of P.

Definition (Execution)

We call a sequence of program configurations (`0, s0), . . . , (`n, sn) an
execution of P if there exists a sequence of statements st1 . . . stn such that
for each i ∈ {0, . . . n − 1}
I (`i , sti+1, `i+1) ∈ ∆ and

I (si , si+1) ∈ [[sti+1]]

Matthias Heizmann Program Verification Summer Term 2021 311 / 507

Example: Execution

Control-flow graph of Pab

`1

`2

`5`3

`7

`8

!(b==0)

(b>=0)

b:=b-1

!(b>=0)

b:=b+1

a:=a+1

!!(b==0)

An execution of program Pab

(`5, {a 7→ 42, b 7→ 23})
(`7, {a 7→ 42, b 7→ 22})
(`1, {a 7→ 43, b 7→ 22})
(`2, {a 7→ 43, b 7→ 22})
(`5, {a 7→ 43, b 7→ 22})
(`7, {a 7→ 43, b 7→ 21})

This is a typical (boring) example of an execution. Executions do not
have to start at the initial location. Executions do not have to end at
the exit location.

Matthias Heizmann Program Verification Summer Term 2021 312 / 507

Let (ϕpre, ϕpost) be a precondition-postcondition pair for P.

Definition

We call the program configuration (`, s)

I initial, if ` = `init and s ∈ {ϕpre}
I an error configuration if ` = `ex and s /∈ {ϕpost}

Note that later in this course we will introduce assert statements and
then we will extend the definition of an error configuration.

Theorem (PppSatAndExec)

The program P = (V , µ, st) satisfies the precondition-postcondition pair
(ϕpre, ϕpost) iff there exists no execution (`0, s0), . . . , (`n, sn) such that
(`0, s0) is an initial configuration and (`n, sn) is an error configuration.

We will discuss the proof of this theorem later. First we will see how
we can use this theorem.

Matthias Heizmann Program Verification Summer Term 2021 313 / 507

Does the following program satisfy the given precondition-postcondition pair?

1 while(x % 1337 != 0) {

2 if (y % 37 != 0) {

3 x = (3 * x) % (256 * 256);

4 y = (- 2 * y + 1) % (256 * 256);

5 } else {

6 tmp = x;

7 x = y;

8 y = tmp;

9 }

10 }

ϕpre : x = 1 ∧ y = 1
ϕpost : y ≤ 31337

If a program is correct, we can give a derivation in the Hore proof system. Let’s assume

that we tried for hours to find a derivation but failed and now have the impression that the

program does not satisfy the precondition-postcondition pair. So far we only had one way

to formally show that (ϕpre, ϕpost) is not satisfied: compute the binary relation over states

for this program to check if every pair satisfies the precondition-postcondition pair.

Unfortunately, the relation of this program is very complex and we (resp. at least the

lecturer) do not have an idea how to compute it efficiently.

Thanks to Theorem PppSatAndExec we now have an alternative within our formal setting:

we can give an execution.

Matthias Heizmann Program Verification Summer Term 2021 314 / 507

Since there is only one single initial configuration we can run the program and in case it
terminates we can check the value of the variable y.

1 #include <stdio.h>

2

3 int main(void) {

4 unsigned short x = 1;

5 unsigned short y = 1;

6 while(x % 1337 != 0) {

7 if (y % 37 !=0) {

8 x = (3 * x);

9 y = (- 2 * y + 1);

10 } else {

11 unsigned short tmp = x;

12 x = y;

13 y = tmp;

14 }

15 printf("value of x is %d\n", x);

16 printf("value of y is %d\n", y);

17 }

18 return 0;

19 }

In order to do so we
implemented the
program in C.

The output has 8616
lines, it starts with the
lines

value of x is 3

value of y is 65535

and ends with the lines

value of x is 33425

value of y is 43691

We assume optimistically that this C program really mimics the Boostan program from the
preceding slide and conclude that the Boo program does not satisfy the given
precondition-postcondition pair.

Matthias Heizmann Program Verification Summer Term 2021 315 / 507

Example

Consider the program Pxor with V = {x , y}, µ(x) = µ(y) = {true, false}.

Q: Does the following program satisfy the given precondition-postcondition
pair?

1 while (x == y) {

2 y := x;

3 havoc x;

4 }

ϕpre : x
ϕpost : x → ¬y

`1`2

`3

`4x == y !(x == y)

y := x; havoc x;

A: Yes. Loop invariant true is sufficient. If we leave the loop then x and y are
disjoint.

Q: Does Theorem PppSatAndExec also allow us to give an alternative proof
that uses executions?

A: Not directly. The program has infinitely many executions that start in the
initial location and end in the exit location. We cannot check all of them.

The definitions on the next slide will however help us to approach the

problem.
Matthias Heizmann Program Verification Summer Term 2021 316 / 507

Definition (Reachable Program Configuration)

We call a configuration (`, s) reachable if there exists a program execution
(`0, s0), . . . , (`n, sn) such that (`0, s0) is an initial configuration and
(`n, sn) = (`, s).

Theorem (CorrectIffNoErrorReach)

A program satisfies a given precondition-postcondition pair iff the set of
reachable configurations does not contain an error configuration.

Proof. Follows directly from Theorem PppSatAndExec and the definition
above.

Can we compute the set of reachable program configurations?

Matthias Heizmann Program Verification Summer Term 2021 317 / 507

Theorem

The set of reachable configurations RC is the smallest set such that

I each initial configuration is an element of RC

I if (`, s) ∈ RC, (`, st, `′) ∈ ∆ and (s, s ′) ∈ [[st]] then (`′, s ′) ∈ RC.

Proof. Nontrivial. Later in this course.

This algorithm hints a simple (possibly nonterminating) algorithm for
the construction of the set of reachable configurations. For the
construction of this set the following graph can be helpful.

Definition

The reachability graph is a pair (RC ,T) such that
(
(`, s), st, (`′, s ′)

)
∈ T

iff (`, st, `′) ∈ ∆ and (s, s ′) ∈ [[st]]

Exercise: Construct the reachability graph for the Program Pxor. (Exercise
Sheet 14)

Matthias Heizmann Program Verification Summer Term 2021 318 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex14.pdf
http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex14.pdf

Outline of the Section on Control-flow graphs

Motivation
Formal Definition
Program Executions
Proof of the Error Execution Theorem

Matthias Heizmann Program Verification Summer Term 2021 319 / 507

In this subsection, we prove the Theorem PppSatAndExec.

We start by stating the following lemma. The theorem follows directly
from this lemma, the definition of an error configuration and the definition
of satisfiability of precondition-postcondition pairs..

Lemma (RelAndExec)

Let G = (Loc,∆, `init, `ex) be a control-flow graph for st, then
there exists a program execution (`0, s0), . . . , (`n, sn) with `0 = `init and
`n = `ex, iff (s0, sn) ∈ [[st]].

Proof. By induction over the height of st’s derivation tree. Using the five
lemmas from the remaining subsection, the proof can be carried out
analogously to the soundness proof for the Hoare proof system.

Matthias Heizmann Program Verification Summer Term 2021 320 / 507

Lemma (RelAndExec.1)

Let st be an assignment statement, an array assignment statement, a
havoc statement, or an assume statement, and let G = (Loc,∆, `init, `ex)
be a control-flow graph for st. There exists a program execution
(`0, s0), . . . , (`n, sn) with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[st]].

Proof.
Since st is an assignment statement, an array assignment statement, a havoc statement,
or an assume statement, the control-flow graph has the form
G = ({`init, `ex}, {(`init, st, `ex)}, `init, `ex).

“⇒′′ By definition of a program execution we have (`i , sti+1, `i+1) ∈ ∆ for each
i ∈ {0, . . . n − 1}. Since ∆ contains only one element and `init 6= `ex, the execution is a
sequence of length 2 and has the form (`init, s0), (`ex, s1). By definition of a program
execution there has to be some statement such st1 that (`init, st1, `ex) ∈ ∆ and
(s0, s1) ∈ [[st1]]. Since there is only one statement in the control-flow graph, st1 is st.

“⇐′′ Let (s, s ′) be a pair of states for which the assumption (s, s ′) ∈ [[st]] holds. Since

(`init, st, `ex) ∈ ∆, the sequence (`init, s), (`ex, s
′) is an execution.

Matthias Heizmann Program Verification Summer Term 2021 321 / 507

Lemma (RelAndExec.2)

Let G = (Loc,∆, `init, `ex) be a control-flow graph for the sequential
composition st1st2. There exists a program execution (`0, s0), . . . , (`n, sn)
with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[st1st2]].

Proof. Exercise 3 on Exercise Sheet 15.

Matthias Heizmann Program Verification Summer Term 2021 322 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex15.pdf

Lemma (RelAndExec.3)

Let G = (Loc,∆, `init, `ex) be a control-flow graph for the conditional
statment if(expr){st1}else{st1}. There exists a program execution
(`0, s0), . . . , (`n, sn) with `0 = `init and `n = `ex, iff
(s0, sn) ∈ [[if(expr){st1}else{st1}]].

Proof. Analogously to the other proofs in this subsection. No carried out
in the lecture.

Matthias Heizmann Program Verification Summer Term 2021 323 / 507

Lemma (RelAndExec.4)

Let G = (Loc,∆, `init, `ex) be a control-flow graph for the statement
while(expr){st}. There exists a program execution (`0, s0), . . . , (`n, sn)
with `0 = `init and `n = `ex, iff (s0, sn) ∈ [[while(expr){st}]].

Proof.

Let G ′ = (Loc st ,∆st , `stinit, `
st
ex) be the control flow graph for st from which G is built.

Then `init = `stex. Furthermore, let R = ({expr} × SV,µ) ∩ [[st]].

Matthias Heizmann Program Verification Summer Term 2021 324 / 507

“⇐ ” Let (s0, sn) ∈ [[while(expr){st}]] = R∗ ∩ (SV,µ × {!expr}). Then
sn ∈ {!expr}, and (s0, sn) ∈ Rk for some k ∈ N0. We perform induction over k:

I For k = 0, it follows that s0 = sn ∈ {!expr}.By the definition of a CFG for
while-statements, G has an edge (`init, assume !expr; , `ex).Hence the
sequence (`init, s0), (`ex, sn) is a program execution.

I For k + 1, we observe that there exists some s ′ such that (s0, s
′) ∈ R and

(s ′, sn) ∈ Rk .By induction hypothesis, there is an execution (`m, sm), . . . , (`n, sn)
with sm = s ′, `m = `init and `n = `ex.

From (s0, s
′) ∈ R we conclude s0 ∈ {expr} and (s0, s

′) ∈ [[st]].By structural
induction over the program, it follows that there is an execution
(`1, s1), . . . , (`m, sm) with `1 = `stinit, s1 = s0, `m = `stex and sm = s ′.Furthermore,
(`init, assume expr , `1) ∈ ∆ and (s0, s1) ∈ [[assume expr;]].Hence we combine
the executions as (`0, s0), (`1, s1), . . . , (`m, sm), . . . , (`n, sn).

Matthias Heizmann Program Verification Summer Term 2021 325 / 507

“⇒ ” Let (`0, s0), . . . , (`n, sn) be such a program execution. We perform the induction
over k, the number of occurrences of `stex = `init among the `i .

I For k = 1 (k = 0 is not possible), we must have n = 1, as the only incoming
transition of `n = `ex is (`init, assume !expr , `ex).Hence we must have
s0 = sn ∈ {!expr} and thus (s0, sn) ∈ [[while (expr) {st}]].

I For k + 1, let m be the second occurrence of `init, i.e., `m = `init with m > 0 and
`j 6= `init for all 0 < j ≤ m.Then (`m, sm), . . . , (`n, sn) is an execution and by
induction (sm, sn) ∈ [[while(expr){st}]], i.e., (sm, sn) ∈ R∗ and sn ∈ {!expr}.

Then `1 = `stinit, as that is the only other outgoing edge from `init = `0, and hence
(s0, s1) ∈ [[assume expr;]] and s0 = s1 ∈ {expr}.The sequence
(`1, s1), . . . , (`m, sm) is then an execution of st (in G ′) with `m = `stex, and by
structural induction it follows that (s1, sm) ∈ [[st]].Thereby (s0, sm) ∈ R.

By sequential composition with (sm, sn) we conclude (s0, sn) ∈ R∗.Finally, it follows
that (s0, sn) ∈ [[while(expr){st}]].

�

Matthias Heizmann Program Verification Summer Term 2021 326 / 507

Program Verification
Summer Term 2021

Lecture 17: Predicate Transformers

Matthias Heizmann

Monday 21st June

Matthias Heizmann Program Verification Summer Term 2021 327 / 507

Section 12

Predicate Transformers

Matthias Heizmann Program Verification Summer Term 2021 328 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 329 / 507

In this section we will learn about program transformers21 which will be our main
means for analyzing the effect of statements in our control-flow graph-based view on
programs..

Goals of this section are

I learn to execute a loop-free program symbolically (i.e., on all inputs in parallel)

I deepen our understanding about the connection between formulas and sets of
states

I learn to simplify formulas by eliminating quantifiers

21https://en.wikipedia.org/wiki/Predicate_transformer_semantics
Matthias Heizmann Program Verification Summer Term 2021 330 / 507

https://en.wikipedia.org/wiki/Predicate_transformer_semantics

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 331 / 507

Example

Consider the program Pxor with V = {x , y , z}, µ(x) = µ(y) = µ(z) = Z.

Q: Does the following program satisfy the given precondition-postcondition
pair?

1 z := y + x;

2 assume x <= -25;

3 x := z * z - 2;

4 assume x < 0;

5 havoc x;

6 assume (z*(y\%23) <-20);

ϕpre : y ≥ 1
ϕpost : y ≥ 45

Matthias Heizmann Program Verification Summer Term 2021 332 / 507

From Theorem PppSatAndExec we know that we can disprove correctness by
finding an execution that starts in an initial configuration and ends in an error
configuration. On the next slide we will try to find such an execution.

Unlike a program from the last section this program has more than one initial
states.

I We do not really know where we should start, apply an naive approach where
we pick some state and run the program.

I The execution “gets stuck” at the first assume statement. We wonder if only
this execution does not reach the error configuration or if all executions cannot
reach an error configuration. We realize that we could have passed the first
assume statement if we would have started in a different state. We pick a
different initial configuration and restart do construct an execution.

I The execution “gets stuck” at the second assume statement. We wonder if only
this execution does not reach the error configuration or if all executions cannot
reach an error configuration. We realize that we could have passed the second
assume statement if we would have started in a different state. We pick a
different initial configuration and restart do construct an execution.

I ...

Matthias Heizmann Program Verification Summer Term 2021 333 / 507

Example

`1

`2

`3

`4

`5

`6

`7

z := y+x

x <= -25

x := z*z-2

x < 0

havoc x

z*(y%23) < -20

{x 7→ 3,
y 7→ 2,
z 7→ 1}

{x 7→ 3,
y 7→ 2,
z 7→ 5}

{x 7→ −25,
y 7→ 2,
z 7→ 1}

{x 7→ −25,
y 7→ 2,

z 7→ −23}

{x 7→ −25,
y 7→ 2,

z 7→ −23}

{x 7→ 527,
y 7→ 2,

z 7→ −23}

{x 7→ −25,
y 7→ 26,
z 7→ 1}

{x 7→ −25,
y 7→ 26,
z 7→ 1}

{x 7→ −25,
y 7→ 26,
z 7→ 1}

{x 7→ −1,
y 7→ 26,
z 7→ 1}

{x 7→ −1,
y 7→ 26,
z 7→ 1}

{x 7→ 1337,
y 7→ 26,
z 7→ 1}

Matthias Heizmann Program Verification Summer Term 2021 334 / 507

In order to find a suitable execution you probably did (maybe implicitly) compute
the set of all states that are reachable after each of the statements. The next slide
shows formulas whose satisfying variable assignments are exactly the reachable sets
of states.
In the next subsection we define the strongest post predicate transfomer which allows
us to compute these formulas.

Matthias Heizmann Program Verification Summer Term 2021 335 / 507

Example

`1

`2

`3

`4

`5

`6

`7

z := y+x

x <= -25

x := z*z-2

x < 0

havoc x

z*(y%23) < -20

true

z = y + x

z = y + x
∧x ≤ −25

x = z2 − 2
∧z − y ≤ −25

x = z2 − 2 ∧ x < 0
∧z − y ≤ −25

−1 ≤ z ∧ z ≤ 1
∧z − y ≤ −25

z = −1 ∧ y ≥ 24
∧(y%23) > 20

Matthias Heizmann Program Verification Summer Term 2021 336 / 507

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 337 / 507

Strongest Post

First, we state informally the properties that our definition of the
strongest post operator sp should have. Then we discuss how we could
give a formal definition.

Idea:
Given a set of states S and a statement st, the strongest postcondition
sp(S , st) is the set of states for which the following holds. If there is a
state s ∈ S

I in which we can execute st,

I in which st terminates, and

I s ′ is a successor after executing st

then s ′ ∈ sp(S , st).

Matthias Heizmann Program Verification Summer Term 2021 338 / 507

Post Image

Reminder (Post Image)

Given a binary relation R over the set X and a subset of Y ⊆ X , the
postimage of Y under R, denoted post(Y ,R), is the set
{x ∈ X | exists y ∈ Y such that (y , x) ∈ R}

Example

Let R be the “strictly smaller” relation over Z (i.e.,
R = {(a, b) ∈ Z× Z | a < b}) and Y = {y ∈ Z | y ≥ 5} then

post(Y ,R) = {y ∈ Z | y ≥ 6}

Matthias Heizmann Program Verification Summer Term 2021 339 / 507

Definition (Strongest Postcondition)

Given a set of states S and a statement st the strongest postcondition is
the post image of S under the relation [[st]], i.e.

sp(S , st) = post(S , [[st]]).

Example

See Exercise Sheet 16.

In one of the next subsections we will see some special cases in which
the resulting state of the strongest postcondition can be represented by
a formula if the input was represented by a formula.

Matthias Heizmann Program Verification Summer Term 2021 340 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex16-short.pdf

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 341 / 507

The goal of this short subsection/excursus is to deepen/recap our understanding of
the connection between formulas and sets of states.

Matthias Heizmann Program Verification Summer Term 2021 342 / 507

Reminder (Implication)

Given a (possibly infinite) set of FOL formulas Γ and a PL formula ψ, we say that Γ implies ψ if
for all models M and for all variable assignments ρ the following holds.

If [[ϕ]]M,ρ is true for all ϕ ∈ Γ then also [[ψ]]M,ρ is true

We use � to denote this binary implication relation and we say that the implication Γ � ψ holds
if Γ implies ψ. Furthermore, we say that ϕ implies ψ, written ϕ � ψ, if the implication {ϕ} � ψ
holds.

Reminder: Since the end of our introduction to logics we consider only models M in which the

axioms of all SMT-LIB theories are valid.

Theorem (Duality of Implication and Subset)

ϕ implies ψ iff {ρ | [[ψ]]M,ρ is true} ⊆ {ρ | [[ϕ]]M,ρ is true}

Reminder (Sets of Program States)

Given a program P = (V , µ, T) we defined {ϕ} := {s ∈ SV,µ | [[ϕ]]M,ρ is true for ρ = s}

Corollary (Duality of Implication and Subset)

ϕ implies ψ iff {ψ} ⊆ {ϕ}
Matthias Heizmann Program Verification Summer Term 2021 343 / 507

true

y ≥ 23 ∨ x = 42

y ≥ 23 x = 42

y ≥ 23 ∧ x = 42

false

{
x 7→ n,
y 7→ m

| n,m ∈ Z
}

{
x 7→ n,
y 7→ m

| n,m ∈ Z,
n = 42 or m ≥ 23

}

{
x 7→ n,
y 7→ m

| n,m ∈ Z,
m ≥ 23

} {
x 7→ 42,
y 7→ m

| m ∈ Z
}

{
x 7→ 42,
y 7→ m

| m ∈ Z,
m ≥ 23

}

∅

⊆⊆ ⊆

⊆⊆⊆ ⊆⊆⊆

⊆⊆⊆ ⊆⊆⊆

⊆⊆ ⊆�� �

��� ���

��� ���

�� �

Matthias Heizmann Program Verification Summer Term 2021 344 / 507

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 345 / 507

Quantified formulas are notoriously difficult to solve. Later in this section we have
to deal with quantified formulas. In this subsection we will learn about quantifier
elimination wich is the task of finding an equivalent quanfitier-free formula for a
given formula.

Matthias Heizmann Program Verification Summer Term 2021 346 / 507

Quantifier Elimination

Theorem (Destructive Equality Resolution 1)

If the variable x does not occur in the term t then the formula
∃x .ϕ ∧ x = t and the formula ϕ[x 7→ t] are equivalent.

Proof. Not given in this course. Follows directly from the axioms of
equality and the semantics of existential quantification and conjunction.

Problem: Formula does not have required form.

Solution: Do equivalence transformation which solves equality for subject x̂ .

Example

∃x̂ .(x̂%2) = 0 ∧ x = x̂ + 1
equivalent to ∃x̂ .(x̂%2) = 0 ∧ x̂ = x − 1
equivalent to (x − 1)%2 = 0

Matthias Heizmann Program Verification Summer Term 2021 347 / 507

Program Verification
Summer Term 2021

Lecture 18: Predicate Transformers cont’d

Matthias Heizmann

Wednesday 23rd June

Matthias Heizmann Program Verification Summer Term 2021 348 / 507

Problem: Since x̂ is an integer we cannot simply divide by 2.

Solution: We can divide by 2 if we add the conjunct (x%2) = 0.

Example

Let x , x̂ be variable symbols whose sort is Int.
∃x̂ .select(a, x̂) = 23 ∧ x = 2 · x̂

equivalent to ∃x̂ .select(a, x̂) = 23 ∧ x̂ = x div 2 ∧ (x%2) = 0
equivalent to select(a, x div 2) = 23 ∧ (x%2) = 0

Problem: Since y could be 0, we cannot simply divide by y .

Solution: Case distinction. (Does eliminate quantifier but reduces its scope.)

Example

Let x , x̂ , y be variable symbols whose sort is Real .
∃x̂ .select(a, x̂) = 23 ∧ x = y · x̂

equivalent to ∃x̂ . select(a, x̂) = 23 ∧ x = y · x̂ ∧ y 6= 0
∨ select(a, x̂) = 23 ∧ x = y · x̂ ∧ y = 0

equivalent to select(a, x/y) = 23 ∧ y 6= 0
∨ (∃x̂ .select(a, x̂) = 23) ∧ x = 0 ∧ y = 0

Matthias Heizmann Program Verification Summer Term 2021 349 / 507

Quantifier Elimination

Theorem (Destructive Equality Resolution 2)

If the variable x does not occur in the term t then the formula
∀x .ϕ ∨ x 6= t and the formula ϕ[x 7→ t] are equivalent.

Proof. Negate und and use the destructive equality resolution theorem for
existential quantification. Discussed only very briefly in the lecture.

Matthias Heizmann Program Verification Summer Term 2021 350 / 507

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 351 / 507

In practice we represent sets of states by formulas and we would like to let a
machine compute the strongest post operator.
The definition of the strongest post operator does not directly tell us how we can
implement the operator.

In this subsection we will see characterizations of the strongest post operator that
will ease an implementation of the operator. For these characterizations, we consider
each kind of statement individually and we always consider the special case where
the set of states is given by a formula.

Matthias Heizmann Program Verification Summer Term 2021 352 / 507

Theorem (Strongest Post of the Assignment Statement)

sp({ϕ}, x := expr) is {∃x̂ .ϕ[x 7→ x̂] ∧ x = expr [x 7→ x̂]}

Reminder (Semantics of the Assignment Statement)

[[x := expr ;]] is {(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = expr ∧
∧

v∈V ,v 6=x
v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Proof.
sp({ϕ}, x := expr;)
= {s2 | exists s1 ∈ {ϕ} and (s1, s2) ∈ [[x := expr ;]]}
= {s2 | exists s1 ∈ SV,µ and [[ϕ ∧ x ′ = expr ∧

∧
v∈V ,v 6=x

v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}
= {s2 | [[∃v̂1 . . . ∃v̂n.ϕ[v1 7→ v̂1, . . . , vn 7→ v̂n] ∧ x = expr [v1 7→ v̂1, . . . , vn 7→ v̂n]

∧
∧

v∈V ,v 6=x

v = v̂]]M,ρ is true and ρ = s2}

= {s2 | [[∃x̂ .ϕ[x 7→ x̂] ∧ x = expr [x 7→ x̂]]]M,ρ is true and ρ = s2}
= {∃x̂ .ϕ[x 7→ x̂] ∧ x = expr [x 7→ x̂]}

Matthias Heizmann Program Verification Summer Term 2021 353 / 507

Theorem (Strongest Post of the Havoc Statement)

sp({ϕ}, havoc x;) is {∃x .ϕ}

Reminder (Semantics of the Havoc Statement)

[[havoc x;]] is {(s1, s2) ∈ SV,µ × SV,µ | [[x ′ = expr ∧
∧

v∈V ,v 6=x
v ′ = v]]M,ρ is true

and ρ = s1 ∪ prime(s2)}

Proof. Very similar to the proof for the Assignment Statement.

Matthias Heizmann Program Verification Summer Term 2021 354 / 507

Theorem (Strongest Post of the Assume Statement)

sp({ϕ}, assume expr;) is {ϕ ∧ expr}

Reminder (Semantics of the Assume Statement)

[[assume expr;]] is {(s1, s2) ∈ SV,µ × SV,µ | s1 = s2 and s2 ∈ {expr}}

Proof.
sp({ϕ}, assume expr;)
= {s2 | exists s1 ∈ {ϕ} and (s1, s2) ∈ [[assume expr;]]}
= {s2 | exists s1 ∈ {ϕ} and s1 = s2 and s2 ∈ {expr}}
= {ϕ ∧ expr}

Matthias Heizmann Program Verification Summer Term 2021 355 / 507

Theorem (Strongest Post of the Sequential Composition)

If st is an sequential composition of the form st1st2, then sp(S , st) is
sp(sp(S , st1), st2).

Reminder (Semantics of the Sequential Composition)

[[st1st2]] is [[st1]] ◦ [[st2]] “the relational composition”

Reminder (Post Image)

post(Y ,R) = {x ∈ X | exists y ∈ Y such that (y , x) ∈ R}

Proof.
sp(S , st1st2)
= {s3 ∈ SV,µ | exists s1 ∈ {ϕ} such that (s1, s3) ∈ [[st1st2]]}
= {s3 ∈ SV,µ | exists s1 ∈ {ϕ}, exists s2 ∈ SV,µ such that (s1, s2) ∈ [[st1]]

and (s2, s3) ∈ [[st2]]}
= {s3 ∈ SV,µ | exists s2 ∈ sp({ϕ}, st1) such that (s2, s3) ∈ [[st2]]}
= sp(sp(S , st1), st2)

Matthias Heizmann Program Verification Summer Term 2021 356 / 507

Theorem (Strongest Post of the Conditional Statement)

See Exercise 1 of Exercise Sheet 17.

Matthias Heizmann Program Verification Summer Term 2021 357 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex17.pdf

Strongest Post of the While Statement

In general, we cannot express the strongest post of the while statement as a formula.

However, we give a characterization that motivates that the strongest post of a

while statement can be very complex in some cases and that is can also be

computed in some special cases.

We define the k-th iterative application application of the strongest post
operator sp(. . . sp(︸ ︷︷ ︸

k times

S , st) . . .) formally as follows.

Notation

spk(S , st) =

{
S if k = 0

sp(spk−1(S , st), st) if k > 0

Theorem

If st is a while statement of the form while(expr){st} then sp(S , st) is⋃
k∈N

sp(spk(S , assume expr; st), assume !expr;)

Matthias Heizmann Program Verification Summer Term 2021 358 / 507

Strongest Post of the While Statement

There are however several examples in which the strongest post of a while statement

can be expressed by a formula.

Example

sp({i = 0}, while(b){i := i+1; havoc b;}) is {¬b ∧ i ≥ 0}

Example

sp({i = 0 ∧ i ≥ n}, while(i<n){a[i] := 0; i := i+1;}) is

{i = n ∧ (∀k .(0 ≤ k ∧ k < n)→ select(a, k) = 0)}

TODO Say something about the research area of loop acceleration.

Matthias Heizmann Program Verification Summer Term 2021 359 / 507

Outline of the Section on Predicate Transformers

Motivation
Strongest Post
Excursus: Formulas and Sets of States
Excursus: Quantifier Elimination
Strongest Post And Formulas
Weakest Precondition

Matthias Heizmann Program Verification Summer Term 2021 360 / 507

Analogously to the strongest post predicate transformer sp, we defined
the weakest precondition predicate transformer wp in Exercise 4 of
Exercise Sheet 17

Matthias Heizmann Program Verification Summer Term 2021 361 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex17.pdf

Program Verification
Summer Term 2021

Lecture 19: Bounded Model Checking

Matthias Heizmann

Monday 28th June

Matthias Heizmann Program Verification Summer Term 2021 362 / 507

Section 13

Bounded Model Checking

Matthias Heizmann Program Verification Summer Term 2021 363 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 364 / 507

In this section we will learn the bounded model checking [ac/BiereCCSZ03]
verification technique. We give a rather non-standard introduction to the topic
because we use want to use definition that we need later in this course.

Goals of this section are

I set formal basis for the later sections on abstractions

I learn that positive tests results can be deceptive even if we have a high test
coverage

I see an algorithm that can find bugs is erroneous programs

Matthias Heizmann Program Verification Summer Term 2021 365 / 507

Outline of the Section on Bounded Model Checking

Abstract Reachability Graph
Precise Abstract Reachability Graph
Algorithms for Constructing Graphs

Matthias Heizmann Program Verification Summer Term 2021 366 / 507

In this subsection we will only see two definitions. This definitions will be the basis
for the following subsection that the basis for the sections on abstractions. There
will be no examples in this subsection but we will see several examples in the
remaining course. TODO add links to examples

Matthias Heizmann Program Verification Summer Term 2021 367 / 507

Let G = (Loc,∆, `init, `ex) be a control-flow graph for a program P = (V , µ, st).

Definition

An abstract (program) configuration is a pair (`, {ϕ}) where ` is a location
and ϕ is a formula over the program’s variables.

Definition

An abstract reachability graph is a pair (AC ,T) such that AC is a set of
abstract configurations such that

1. for each abstract configuration (`, {ϕ}) for which ϕ 6= false and there
exists (`, st, `′) ∈ ∆, there is a an abstract configuration (`′, {ϕ′})
such that sp({ϕ}, st) ⊆ {ϕ′} and ((`, {ϕ}), st, (`′, {ϕ′})) ∈ T

2. (`init, {ϕpre}) ∈ AC , and

3. for each abstract configuration (`, {ϕ}) there is a path from
(`init, {ϕpre}) to (`, {ϕ}).

We will come back to the (general) abstract reachability graph later and next

consider a special case first.

Matthias Heizmann Program Verification Summer Term 2021 368 / 507

Outline of the Section on Bounded Model Checking

Abstract Reachability Graph
Precise Abstract Reachability Graph
Algorithms for Constructing Graphs

Matthias Heizmann Program Verification Summer Term 2021 369 / 507

Definition

A precise abstract reachability graph is an abstract reachability graph
(AC ,T) such that for each (`, {ϕ}), st, (`′, {ϕ′})) the equality
sp({ϕ}, st) = {ϕ′} holds.

I This definition is very similar to the definition of the abstract reachability
graph but the inclusion in the first bullet point is always an equality.

I A precise abstract reachability graph for a given control-flow graph is unique
up to the formulas that represent the set of state at each location.

Matthias Heizmann Program Verification Summer Term 2021 370 / 507

We will next consider an implementation of the greatest common
divisor (GCD) (see Exercise 1 on Exercise Sheet 06) and wonder if the
implementation is correct.

We have seen in Exercise 1 of Exercise Sheet 05 that formulas that
express the GCD are rather complex and hence we take as the
postcondition only one property of the GCD. Rationale: if this
property is violated, our implementation is bad and if the property is
satisfied, we can strengthen the property.

In order to check correctness, we proceed as follows. We first run some
tests. For each test, we pick an initial program configuration, construct
an execution that starts with that initial configuration and check if the
execution ends in an error configuration.
In order to improve legibility, we depict the tests as tables and omit
the values of the variabes ain and bin.

Matthias Heizmann Program Verification Summer Term 2021 371 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex06-short.pdf
http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex05.pdf

Example: a (faulty?) Implementation of the GCD

1 while (!(a == b)) {

2 if (a >= b) {

3 a := (a - b)/2;

4 } else {

5 b := (b - a)/2;

6 }

7 }

`1

`2

`3`5

`7

!(a==b)

a>=b

a:=(a-b)/2

!(a>=b)

b:=(b-a)/2

(a==b)

ϕpre : ain = a ∧ bin = b ∧ ain > 0 ∧ bin > 0
ϕpost : ain%a == 0 ∧ bin%b == 0

a b
`1 9 15
`2 9 15
`5 9 15
`1 9 3
`2 9 3
`3 9 3
`1 3 3
`7 3 3

a b
`1 40 24
`2 40 24
`5 40 24
`1 8 24
`2 8 24
`3 8 24
`1 8 8
`7 8 8

a b
`1 11 5
`2 11 5
`3 11 5
`1 3 5
`2 3 5
`5 3 5
`1 3 1
`2 3 1
`3 3 1
`1 1 1
`7 1 1

Matthias Heizmann Program Verification Summer Term 2021 372 / 507

None of the three tests showed a violation of the postcondition.
Furthermore these test look like they cover most of the program’s
behavior.

I Every statement is covered by some test.

I We have a test that takes the if-branch first, and we have a test
that takes the else-branch first.

I We have a test for the corner case that both inputs are prime
numbers.

I We have a test for the corner case that the result consists of
several similar prime factors.

We might be tempted to believe that the program is correct.

However, if we start to build the precise abstract reachability graph, we
see after a few iterations that there is an abstract program
configuration whose set of states is not a subset of the postcondition.

Matthias Heizmann Program Verification Summer Term 2021 373 / 507

Control-flow graph of our
GCD implementation

`1

`2

`3`5

`7

!(a==b)

a>=b

a:=(a-b)/2

!(a>=b)

b:=(b-a)/2

(a==b)

Part of
precise abstract reachability graph

(`1, {ain > 0 ∧ bin > 0 ∧ ain = a ∧ bin = b})

(`7, {ain > 0 ∧ bin > 0∧
ain = a ∧ bin = b ∧ a = b})

(`2, {ain > 0 ∧ bin > 0∧
ain = a ∧ bin = b ∧ a 6= b})

(`3, {ain > 0 ∧ bin > 0∧
ain = a ∧ bin = b ∧ a > b})

(`5, {ain > 0 ∧ bin > 0∧
ain = a ∧ bin = b ∧ a < b})

(`1, {ain > 0 ∧ bin > 0∧
bin = b ∧ ain > b
∧a = (ain − b)/2})

(`7, {ain > 0 ∧ bin > 0∧
bin = b ∧ ain > b

∧a = (ain − b)/2 ∧ a = b})

(`1, {ain > 0 ∧ bin > 0∧
ain = a ∧ bin > a
∧b = (bin − a)/2})

a==b!(a==b)

a>=b !(a>=b)

a:=(a-b)/2 b:=(b-a)/2

a==b

Matthias Heizmann Program Verification Summer Term 2021 374 / 507

Definition (Abstract Error Configuration)

Let (ϕpre, ϕpost) be a precondition-postcondition pair. We call an abstract
configuration (`, {ϕ}) an abstract error configuration if ` is the exit
location and the inclusion {ϕ} ⊆ {ϕpost} does not hold.

Example

The abstract configuration
(`7, {ain > 0 ∧ bin > 0 ∧ bin = b ∧ ain > b ∧ a = (ain − b)/2 ∧ a = b})

from the preceding slide is an abstract error configuration.

There is an abstract error configuration in our example. The next
lemma and the next theorem explain the consequences.

Matthias Heizmann Program Verification Summer Term 2021 375 / 507

Let P be a program and let G be a control-flow graph for P.

Theorem

Let (ϕpre, ϕpost) be a precondition-postcondition pair. The program P
satisfies (ϕpre, ϕpost) iff the precise abstract reachability graph for G does
not contain an abstract error configuration.

Proof. Follows directly from Theorem CorrectIffNoErrorReach and the
next Lemma.

Lemma

The set of reachable configurations contains an error configuration iff the
precise abstract reachability graph for G contains an abstract error
configuration,

Proof. TODO

Matthias Heizmann Program Verification Summer Term 2021 376 / 507

Additional exercises: (Difficult there are not always clear “yes”/“no” answers.)

1. How can we check if an abstract configuration is an abstract error
configuration?

2. Is this check decidable?

3. How many nodes does an precise abstract reachability graph have?

4. Which direction of the theorem from the preceding slide is usually
important?

5. In which cases is the other direction also important?

Matthias Heizmann Program Verification Summer Term 2021 377 / 507

Outline of the Section on Bounded Model Checking

Abstract Reachability Graph
Precise Abstract Reachability Graph
Algorithms for Constructing Graphs

Matthias Heizmann Program Verification Summer Term 2021 378 / 507

In this subsection we will see

I an algorithm for the construction of the reachability graph (RC ,T) and

I an algorithm for the construction of the precise abstract reachability
graph (AC ,T).

TODO Explain the algorithms: BFS traversal of the graph while it is build,
perhaps no suprises if you are familiar with BFS traveral of graphs.

Matthias Heizmann Program Verification Summer Term 2021 379 / 507

1: procedure ConstructRC((Loc,∆, `init, `ex) : CFG, ϕpre : Precondition)
returns (RC ,T)

2: RC ← ∅, T ← ∅, worklist← ∅
3: for all s ∈ {ϕpre} do
4: RC ← RC ∪ {(`init, s)}
5: worklist← worklist ∪ {(`init, s)}
6: end for
7: while worklist 6= ∅ do
8: (`, s)←RemoveFirst(worklist)
9: for all `′, st with (`, st, `′) ∈ ∆ do

10: for all s ′ with (s, s ′) ∈ [[st]] do
11: T ← T ∪ {

(
(`, s), st, (`′, s ′)

)
}

12: if (`′, s ′) /∈ RC then
13: RC ← RC ∪ {(`′, s ′)}
14: worklist← worklist ∪ {(`′, s ′)}
15: end if
16: end for
17: end for
18: end while
19: end procedure

Matthias Heizmann Program Verification Summer Term 2021 380 / 507

1: procedure ConstructAC((Loc,∆, `init, `ex) : CFG, ϕpre : Precondition)
returns (AC ,T)

2: T ← ∅
3: AC ←

{
(`init, {ϕpre})

}
4: worklist←

{
(`init, {ϕpre})

}
5: while worklist 6= ∅ do
6: (`,S)←RemoveFirst(worklist)
7: for all `′, st with (`, st, `′) ∈ ∆ do
8: S ′ ← sp(S , st)
9: T ← T ∪ {

(
(`,S), st, (`′,S ′)

)
}

10: if (`′,S ′) /∈ AC then
11: AC ← AC ∪ {(`′,S ′)}
12: if S ′ 6= {false} then
13: worklist← worklist ∪ {(`′,S ′)}
14: end if
15: end if
16: end for
17: end while
18: end procedure

Matthias Heizmann Program Verification Summer Term 2021 381 / 507

Algorithm for Bounded Model Checking

Apply the algorithm ConstructAC with the following modifications.

I Check if (`′,S) is an error configuration while adding it to the graph.

I If (`′, S) is an error configuration, then discontinue to build the graph
and tell the user that his program is not safe.

I Construct a path (`0, S0), . . . , (`0, S0) such that (`0, S0) is
(`init, {ϕpre}) and (`n, Sn) is the error configuration (`′,S).

I Let st1, . . . sn be a sequence of statements such that
(`i−1, sti , `i) ∈ ∆ for each i ∈ {1, . . . , n}. Return st1, . . . sn to the
user as a counterexample to safety of his program.

Guarantees correctness up to a bound:

After we explored all nodes whose distance to the initial node is smaller
than k , we can guarantee the program cannot reach an error by executing
less than k statements.

Matthias Heizmann Program Verification Summer Term 2021 382 / 507

Program Verification
Summer Term 2021

Lecture 20: Assert, Abstractions

Matthias Heizmann

Wednesday 30th June

Matthias Heizmann Program Verification Summer Term 2021 383 / 507

Section 14

Correctness Specification via Assert Statement

Matthias Heizmann Program Verification Summer Term 2021 384 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 385 / 507

In Boogie, Java, Python and many other programming languages there is an assert
statement 22 . The assert statement consists of a Boolean expression that is
evaluated when the program executes the statement. If the expression is evaluated
to true the execution continues regularly. If the expression is evaluated to false the
program is considered erroneous and e.g., an exception is thrown.

1 assume p != 0;

2 while (n >= 0) {

3 assert p != 0;

4 if (n == 0) {

5 p := 0;

6 }

7 n := n - 1;

8 }

Example of some Boogie code whose
correctness is specified by the assert
statement in line 3. This code is correct,
if the value of the variable p is never zero
in line 3.

We will extend Boostan by an assert statement. We will not define the relational

semantics for this statement and use it only in contexts where we work with

control-flow graphs. In Exercise 3 of Exercise Sheet 18 we will see that we can

translate every specification given by assert statements into a specification given by

a precondition-postcondition pair if we also allow a minor modification of the

program.

22Wikipedia: Assertion
Matthias Heizmann Program Verification Summer Term 2021 386 / 507

https://en.wikipedia.org/wiki/Assertion_(software_development)

Grammar for Boostan with Assert Statement

GBoo = (ΣBoo,NBoo,PBoo,SBoo)

ΣBoo = {while, if, else, {, }, havoc, assume, assert} ∪ ΣB

NBoo = {Xstmt,Xlhs} ∪ NB

PBoo = {Xstmt → Xlhs:=Xexpr;

Xstmt → havoc Xvar;

Xstmt → assume Xexpr;

Xstmt → assert Xexpr;

Xstmt → XstmtXstmt

Xstmt → if (Xexpr){Xstmt} else {Xstmt}
Xstmt → while (Xexpr){Xstmt}
Xlhs → Xvar[Xexpr]

Xlhs → Xvar} ∪ PB

SBoo = XBoo

Matthias Heizmann Program Verification Summer Term 2021 387 / 507

Reminder(Control-Flow Graph)
A control-flow graph is a tuple G = (Loc,∆, `init, `ex) where

I Loc is a finite set whose elements we call locations,

I ∆ is a ternary relation that consists of triples (`, st, `′) where ` and `′ are locations and st is either

I an assignment statement,
I an array assignment statement,
I a havoc statement, or
I an assume statement.

I `init is a location that we call the initial location

I `ex is a location that we call the exit location

Definition (Control-flow graph with error locations)

A control-flow graph with error locations is a tuple
G = (Loc,∆, `init, `ex, Locerr) where

I G = (Loc,∆, `init, `ex) is a control-flow graph and

I Locerr ⊆ Loc is a subset of locations that we call error locations

Matthias Heizmann Program Verification Summer Term 2021 388 / 507

Definition (Control-Flow Graph With Error Locations for a Program)

Given a program P = (V , µ, st) we define the control-flow graph with
error locations for P analogously to the control-flow graph for P. We
always take the union of error locations of “sub control-flow graphs” and
define the control-flow graph for an assert statement below.

Definition:
Let st be an assert statement of the form

assert expr;

then G = (Loc,∆, `init, `ex, Locerr) such that

I Loc = {`1, `2, `3},
I ∆ = {(`init, assume !expr; , `err),

(`init, assume expr; , `ex)},
I `init = `1,

I `ex = `3,

I Locerr = {`2},
I `init 6= `err, `init 6= `ex, and `ex 6= `err.

is a control-flow graph for st.

Example:

`1

`2

`3

assume !expr;

assume expr;

Matthias Heizmann Program Verification Summer Term 2021 389 / 507

We defined the notion of an error configuration for programs with
precondition-postcondition pairs. We will next extend this definition to
programs with assert statements.

Definition (Error Configuration)

We call a program configuration (`, s) an error configuration if ` ∈ Locerr.

Similarly, we extend the notion of an abstract error configuration
which was originally given for programs with
precondition-postcondition pairs to programs with assert statements.

Definition (Abstract Error Configuration)

We call an abstract configuration (`, {ϕ}) an abstract error configuration
if ` ∈ Locerr and {ϕ} 6= ∅.

Please note that it is bad practise to extend an existing definition

Matthias Heizmann Program Verification Summer Term 2021 390 / 507

Please note that it is bad practise to extend an existing definition.

From the error configuration’s point of view it would have been
straightforward to introduce the content of the lecture in the following
order.

1. Boostan and its relational semantics.

2. Assert statements.

3. Control flow graph with error locations.

4. Only then: Discussion about correctness,
precondition-postcondition pairs.

5. Definition of error configurations for both kinds of specifications
at.

Now, we have to check that theorems and lemmas that we gave so far
also hold for our extended definitions.

If we think it becomes clear form the context, we will always explicitly
state whether correctness was specified by assert statements or
precondition-postcondition pairs.

Matthias Heizmann Program Verification Summer Term 2021 391 / 507

Section 15

Abstractions – Part 1

Matthias Heizmann Program Verification Summer Term 2021 392 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 393 / 507

In this section we will learn a kind of correctness proof that is based on the
control-flow graph.

In this section we see

I that bounded model checking is typically not sufficient to prove correctness of
a program

I how abstractions help to prove correctness

(This section is directly build upon the preceding section on bounded model
checking.)

Matthias Heizmann Program Verification Summer Term 2021 394 / 507

Consider the program on the following slide.

I The program has infinitely many configurations. Infinitely many configurations are
reachable, we cannot draw a reachability graph.

I The precise abstract reachability graph has infinitely many configurations too. Our
bounded model checking algorithm will fail.

I Observation: The variable x is initially zero. We only increment x. Hence x can never
become -1 and the program satisfies its precondition-postcondition pair.

Consider the graph on the following slide.

I Each node represents a configuration of the program. Different rows represent
different evaluations of the variables. Different columns represent different locations.
The initial configurations are highlighted blue, the error configurations are highlighted
red.

I This graph is not a reachability graph because we show also non-reachable
configurations.

Idea of our abstraction:
Partition configurations into finitely many equivalence classes (here: light blue boxes).
Build a graph whose nodes are the equivalence classes. Connect two equivalence classes
C1,C2 by an edge if there are configurations c1 ∈ C1 and c2 ∈ C2 that are connected by an
edge. Call an equivalence class initial if it contains an initial configuration. Call an
equivalence class error if it contains an error configuration.
If there is no path from an initial equivalence class to an error equivalence class, there is
also no path from an initial configuration to an error configuration and the analyzed
program is correct.
Unfortunately, the contrary direction does not hold. If there is a path from an initial
equivalence class to an error equivalence class, the program might be incorrect but it might
also be the case the we have chosen a partition that is not helpful.

Matthias Heizmann Program Verification Summer Term 2021 395 / 507

`1 `2 `3`4 b havoc b

x:=x+1

!b
ϕpre : x = 0
ϕpost : x 6= −1

{b 7→ true, x 7→ 2}

{b 7→ false, x 7→ 2}

{b 7→ true, x 7→ 1}

{b 7→ false, x 7→ 1}

{b 7→ true, x 7→ 0}

{b 7→ false, x 7→ 0}

{b 7→ true, x 7→ −1}

{b 7→ false, x 7→ −1}

{b 7→ true, x 7→ −2}

{b 7→ false, x 7→ −2}

`4 `1 `2 `3

Matthias Heizmann Program Verification Summer Term 2021 396 / 507

Next, we will rephrase our ideas for an abstraction in our formal
setting.

We will use abstract configurations as equivalence classes (i.e., like in
the example above we will never have different locations in one
equivalence class).

We note that these lemma/theorem are slightly more general than the
idea mentioned above. The abstract abstract reachability graph does
not require that its abstract configurations form a partition of the
program’s configurations.

Matthias Heizmann Program Verification Summer Term 2021 397 / 507

Let P be a program and let G be a control-flow graph for P.

Lemma

If some abstract reachability graph for G does not contain an abstract
error configuration, then the set of reachable configurations does not
contain an error configuration.

Note that there is an existential quantification: it is sufficient to find some abstract

reachability graph that does not contain an abstract error configuration.

Theorem

Let (ϕpre, ϕpost) be a precondition-postcondition pair. If some abstract
reachability graph for G does not contain an abstract error configuration,
then P satisfies (ϕpre, ϕpost).

As a consequence we make the following definition. We will prove the theorem later and

consider next some examples.

Definition

We call an abstract reachability graph for G a safety proof if is does not
contain an abstract error configuration.

Matthias Heizmann Program Verification Summer Term 2021 398 / 507

We will discuss these lemma/theorem using the following program.

TODO Explain the following program

I motivated by ...

I correct because ...

Matthias Heizmann Program Verification Summer Term 2021 399 / 507

Example

Program code and control-flow graph of the program Pgoanna

1 assume p != 0;

2 while (n >= 0) {

3 assert p != 0;

4 if (n == 0) {

5 p := 0;

6 }

7 n := n - 1;

8 }

`0

`1

`2

`3

`4

`5

`6

`err

p != 0

n >= 0

p != 0

n != 0

n == 0

p := 0

p == 0

n := n-1

n < 0

control flow graphMatthias Heizmann Program Verification Summer Term 2021 400 / 507

Example

Some abstract reachability graph that is suitable to show that the assert statement of

Pgoanna is always valid.

(`0, {true})

(`1, {p 6= 0 ∨ n = −1})

(`2, {p 6= 0})

(`3, {p 6= 0})

(`4, {n = 0})

(`5, {p 6= 0 ∨ n = 0})

(`6, {true})

(`err, {false})

p != 0

n >= 0

p != 0

n != 0

n == 0

p := 0

p == 0

n := n-1

n < 0

Matthias Heizmann Program Verification Summer Term 2021 401 / 507

I The abstract reachability graph of the preceding slide is sufficient
to prove safety of the program because all (resp. the only) abstract
configuration whose location is `err has an empty set of states.

I The graph structure of this abstract reachability graph coincides
with the graph structure of the control-flow graph. The reason for
that is that the lecturer tried to find a small abstract reachability
graph. We will later see examples for abstract reachability graphs
of the same programs that are larger.

I Note that we have not yet seen an algorithm for inferring an
abstract reachability graph. What we learned in the lecture allow
us only the check that the above graph is indeed an abstract
reachability graph for Pgoanna and to check that this abstract
reachability graph is a safety proof for Pgoanna.

Matthias Heizmann Program Verification Summer Term 2021 402 / 507

From a technical point of few that lecture has not made any progress
since the presentation of the Hoare proof system.
The Hoare proof system allowed us to give a correctness proof in case
we guessed “good” loop invariants.
The notion of an abstract reachability graph allows us to give a
correctness proof in case we guessed “good” abstract configurations.

So, for the task of finding correctness proofs, the last sections on
graph-based representations gave us only a new formalism but the task
seems to be as hard as before.

In the next slides we present a approach that reduces the guesswork to
the task of finding a set of formulas B. We will see an algorithm that
uses the set of formulas B to construct an abstract reachability graph.
If the set of formulas B was “good” the abstract reachability graph will
be a safety proof.

Matthias Heizmann Program Verification Summer Term 2021 403 / 507

Definition (Abstract Strongest Post)

Given a finite set of formulas B we define the abstract strongest post
operator as follows.

sp#
B ({ψ}, st) = {

∧
{ϕ ∈ B | sp({ψ}, st) ⊆ {ϕ}}}

If the set B is empty, the abstract strongest post operator is always {
∧
{}},

i.e., the set of states for which the formula
∧
{} holds. This formula is called

the “empty conjunction” and one usually uses the convention that the empty

conjunction is true. We follow this convention.23

23The convention to define the empty conjunction as true is a rather random choice
and cannot be concluded from other definitions. This choice is however sometimes
convenient because then e.g., the formula ϕ ∧

∧
B and the formula

∧
(B ∪ {ϕ}) are

equivalent. Analogously, the empty disjunction is false. In general, the convention is
that the result for an empty set of operands is the neutral element. E.g., for real
numbers, the empty sum is 0 and the empty product is 1.

Matthias Heizmann Program Verification Summer Term 2021 404 / 507

TODO Explain also all of the remaining slides

Matthias Heizmann Program Verification Summer Term 2021 405 / 507

Definition

We call an abstract reachability graph (AC ,T) precise for B if for each

(`, {ϕ}), st, (`′, {ϕ′})) the equality sp#
B ({ϕ}, st) = {ϕ′} holds.

Matthias Heizmann Program Verification Summer Term 2021 406 / 507

1: procedure ConstructACB((Loc,∆, `init, `ex) : CFG, ϕpre, B : formulas)
returns (AC ,T)

2: T ← ∅
3: AC ←

{
(`init, {ϕpre})

}
4: worklist←

{
(`init, {ϕpre})

}
5: while worklist 6= ∅ do
6: (`,S)←RemoveFirst(worklist)
7: for all `′, st with (`, st, `′) ∈ ∆ do

8: S ′ ← sp#
B (S , st)

9: T ← T ∪ {
(
(`,S), st, (`′,S ′)

)
}

10: if (`′,S ′) /∈ AC then
11: AC ← AC ∪ {(`′,S ′)}
12: if S ′ 6= {false} then
13: worklist← worklist ∪ {(`′,S ′)}
14: end if
15: end if
16: end for
17: end while
18: end procedure

Matthias Heizmann Program Verification Summer Term 2021 407 / 507

Abstract reachability graph that is precise for
B = {p 6= 0, n = 0, n = −1, true, false}:

(`0, {true})

(`1, {p 6= 0}) (`1, {n = −1})

(`2, {p 6= 0}) (`2, {false})

(`3, {p 6= 0})

(`4, {p 6= 0 ∧ n = 0})

(`5, {p 6= 0}) (`5, {n = 0})

(`6, {p 6= 0}) (`6, {n = −1})

(`err, {false})

p != 0

n >= 0 n >= 0

p != 0

n == 0

p := 0

n != 0

p == 0

n := n-1 n := n-1

n < 0 n < 0

Matthias Heizmann Program Verification Summer Term 2021 408 / 507

Abstract reachability graph that is precise for
B = {p 6= 0, n ≥ 0, n = −1, true, false}:

(`0, {true})

(`1, {p 6= 0}) (`1, {true})

(`2, {p 6= 0 ∧ n ≥ 0}) (`2, {n ≥ 0})

(`3, {p 6= 0 ∧ n ≥ 0}) (`3, {p 6= 0})

(`4, {p 6= 0 ∧ n ≥ 0})

(`4, {n ≥ 0})

(`5, {p 6= 0 ∧ n ≥ 0}) (`5, {n ≥ 0})

(`6, {p 6= 0}) (`6, {true})

(`err, {false}) (`err, {n ≥ 0})

p != 0

n >= 0

n < 0

n >= 0

n < 0

p == 0

p != 0

n == 0
n != 0

p == 0

p != 0

n != 0

n == 0

p := 0

p := 0

n := n-1 n := n-1

Matthias Heizmann Program Verification Summer Term 2021 409 / 507

Program Verification
Summer Term 2021

Lecture 21: Infeasibility Proofs

Matthias Heizmann

Monday 5th July

Matthias Heizmann Program Verification Summer Term 2021 410 / 507

Section 16

Infeasibility Proofs

Matthias Heizmann Program Verification Summer Term 2021 411 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 412 / 507

Motivation

Program Verification
↓

Finding Loop Invariants
↓

Finding “good” formulas for construction of an abstract reachability graph

Matthias Heizmann Program Verification Summer Term 2021 413 / 507

How can we get a set of formulas B?

Naive approach: Take all Boolean expressions that occur in the
program.

Problem: Insufficient in many cases.

Workaround: Take also variations.

Problem: In the worst case the size of an abstract
reachability graph (that is precise for B) grows
exponentially in the size of B.

Matthias Heizmann Program Verification Summer Term 2021 414 / 507

We use the next slides to discuss an idea for obtaining useful formulas.

If we want to know whether a sequence of statements has an execution
or not, we can compute sp for the sequence and check if the resulting
formula is logically equivalent to false. This does not yet help us for
constructing a “good” abstract reachability graph because we need a
formula after every statement.
Hence we devise a new kind of proof for the non-existence of an
execution. In this new kind of proof, we have a formula after each
statement and the i-formula denotes a superset of the states that are
reachable after executing the first i statements.
We can obtain such a proof by applying sp iteratively (see middle
column). However there is also a simpler proof (see right column).

Matthias Heizmann Program Verification Summer Term 2021 415 / 507

Idea: Consider Proofs for sequences of statements

sequence of statements
that leads from

initial location to error location

p != 0st1

n >= 0st2

p == 0st3

proof that
there is no execution

trueϕ0

p 6= 0ϕ1

p 6= 0 ∧ n ≥ 0ϕ2

falseϕ3

simplified proof

trueϕ0

p 6= 0ϕ1

p 6= 0ϕ2

falseϕ3

Next: a formalism for generating “simple proofs”

Matthias Heizmann Program Verification Summer Term 2021 416 / 507

Definition (Trace, Feasibility)

We call a sequence of statements a trace. We call a trace π feasible if
there is some execution for π.

Definition (Inductive sequence of sets of states)

Given a sequence of statements π = st1, . . . stn, we call a sequence of sets
of states {ϕ0}, . . . , {ϕn} inductive for π if sp({ϕi}, sti+1) ⊆ {ϕi+1} for all
i ∈ {0, . . . n − 1}

Theorem

If there exists a sequence of sets of states {ϕ0}, . . . , {ϕn} that is inductive
for π such that ϕ0 is true and ϕn is false, then π is infeasible.

Definition (Proof of infeasibility)

We call a sequence of sets of states {ϕ0}, . . . , {ϕn} a proof of infeasibility
if the sequence is inductive for π, ϕ0 is true, and ϕn is false.

Matthias Heizmann Program Verification Summer Term 2021 417 / 507

Definition (Abstraction of a statement)

We define the abstraction of a statement abstract(st) as follows.

abstract(st) =


assume true if st is of the form assume ψ

havoc x if st is of the form x:=e

havoc x if st is of the form havoc x

Definition (Abstraction of a trace)

We call a trace π# = st#
1 , . . . st

#
n an abstraction of a trace π = st1, . . . stn

if each st#
i is either the statement sti or the abstraction abstract(sti).

Theorem

If π# is an abstraction of π and {ϕ0}, . . . , {ϕn} is a proof of infeasibility
for π#, then {ϕ0}, . . . , {ϕn} is a proof of infeasibility for π.

Matthias Heizmann Program Verification Summer Term 2021 418 / 507

On the next two slides we see two examples for the construction of a
“simplified proof”.

The first column shows a trace. The second column shows the
(unnecessarily large) infeasibility proof that is obtained by an iterative
application of sp. The third column shows an abstraction of the trace
in which we highlighted the abstracted statements in orange. The last
column shows the proof that is obtained by applying sp to the
abstraction of the trace.

Matthias Heizmann Program Verification Summer Term 2021 419 / 507

trace π

p != 0st1

n >= 0st2

p == 0st3

sp for π

trueϕ0

p 6= 0ϕ1

p 6= 0 ∧ n ≥ 0ϕ2

falseϕ3

abstract trace π#

p != 0

true

p == 0

sp for π#

trueϕ0

p 6= 0ϕ1

p 6= 0ϕ2

falseϕ3

Matthias Heizmann Program Verification Summer Term 2021 420 / 507

trace π

p != 0st1

n >= 0st2

p != 0st3

n == 0st4

p := 0st5

n := n-1st6

n >= 0st7

p == 0st8

sp for π

trueϕ0

p 6= 0ϕ1

p 6= 0
∧ n ≥ 0

ϕ2

p 6= 0
∧ n ≥ 0

ϕ3

p 6= 0
∧ n = 0

ϕ4

p = 0
∧ n = 0

ϕ5

p = 0
∧ n = −1

ϕ6

falseϕ7

falseϕ8

abstract trace π#

true

true

true

n == 0

havoc p

n := n-1

n >= 0

true

sp for π#

trueϕ0

trueϕ1

trueϕ2

trueϕ3

n = 0ϕ4

n = 0ϕ5

n = −1ϕ6

falseϕ7

falseϕ8

Matthias Heizmann Program Verification Summer Term 2021 421 / 507

Question: How can we construct the abstract trace π#?

Naive Approach: Iteratively abstract statements and check if abstract
trace is still infeasible.

Advanced Approaches: (not discussed in this course) Encode trace as
logical formula such that the formula is satisfiable iff the
trace is feasible (SSA form). Use then either unsatisfiable
cores or Craig interpolation.
In the worst case, the “advanced approaches” are not better
than the “naive approach”.

Matthias Heizmann Program Verification Summer Term 2021 422 / 507

Program Verification
Summer Term 2021

Lecture 22: Infeasibility Proofs cont’d, CEGAR, Trace Abstraction

Matthias Heizmann

Wednesday 7th July

Matthias Heizmann Program Verification Summer Term 2021 423 / 507

Good Infeasibility Proofs

trace π

a[0]:=x*xst1

n:=1000st2

!(n>=0)st3

a[k]==-1st4

k==0st5

abstract trace π#
2

havoc a[0]

n := 1000

!(n>=0)

true

true

sp for π#
2

trueϕ0

trueϕ1

n = 1000ϕ2

falseϕ3

falseϕ4

falseϕ5

abstract trace π#
1

a[0] := x*x

havoc n

true

a[k]==-1

k==0

sp for π#
1

trueϕ0

a[0] = x2ϕ1

a[0] = x2ϕ2

a[0] = x2ϕ3

a[0] = x2

∧ a[k] = −1
ϕ4

falseϕ5

Matthias Heizmann Program Verification Summer Term 2021 424 / 507

Good Infeasibility Proofs

1 a[0] = x * x;

2 n := 1000;

3 while (n >= 0) {

4 n := n - 1;

5 }

6 if (a[k] == -1) {

7 assert k != 0;

8 }

π#
2

havoc a[0]

n := 1000

!(n>=0)

true

true

sp for π#
2

trueϕ0

trueϕ1

n = 1000ϕ2

falseϕ3

falseϕ4

falseϕ5

π#
1

a[0] := x*x

havoc n

true

a[k]==-1

k==0

sp for π#
1

trueϕ0

a[0] = x2ϕ1

a[0] = x2ϕ2

a[0] = x2ϕ3

a[0] = x2

∧ a[k] = −1
ϕ4

falseϕ5

Matthias Heizmann Program Verification Summer Term 2021 425 / 507

Section 17

CEGAR

Matthias Heizmann Program Verification Summer Term 2021 426 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 427 / 507

In this section we will see an approach that can be used to develop a
verification algorithm. The approach is called CEGAR which stands
for CounterExample-Guided Abstraction Refinement.

The approach is motivated by the following two facts.

I We do not know how to construct a set of formulas B that is
suitable for a program P.

I We do know how we can construct a set of formulas that is
suitable for a sequence of statements.

The idea is that we start with an empty set of formulas B and that we
iteratively enlarge this set by formulas that we obtain from the analysis
of traces.

Matthias Heizmann Program Verification Summer Term 2021 428 / 507

Definition

Given an abstract reachability graph (AC ,T), we call a sequence of
statements st1, . . . , stn an error trace in (AC ,T) if there exists a sequence
of abstract configurations (`0, {ϕ0}), . . . , (`n, {ϕn}) such that

I (`0, {ϕ0}) is the initial abstract configuration,

I ((`i , {ϕi}), sti+1, (`i+1, {ϕi+1})) ∈ T for i ∈ {0, . . . , n − 1}, and

I (`n, {ϕn}) is an abstract error configuration.

Intuitively an error trace is a sequence of labelings along a path from
the initial abstract configuration to an abstract error configuration.

Matthias Heizmann Program Verification Summer Term 2021 429 / 507

Let us prove that Pgoanna is correct.

1 assume p != 0;

2 while (n >= 0) {

3 assert p != 0;

4 if (n == 0) {

5 p := 0;

6 }

7 n := n - 1;

8 }

`0

`1

`2

`3

`4

`5

`6

`err

p != 0

n >= 0

p != 0

n != 0

n == 0

p := 0

p == 0

n := n-1

n < 0

Start with B = ∅, construct abstract reachability graph that is precise
for B.

Matthias Heizmann Program Verification Summer Term 2021 430 / 507

Abstract reachablity graph for B = ∅:

(`0, {true})

(`1, {true})

(`2, {true})

(`3, {true})

(`4, {true})

(`5, {true})

(`6, {true})

(`err, {true})

p != 0

n >= 0

p != 0

n != 0

n == 0

p := 0

p == 0

n := n-1

n < 0

Matthias Heizmann Program Verification Summer Term 2021 431 / 507

Abstract reachablity graph for B = {p 6= 0, false}:

(`0, {true})

(`1, {p 6= 0}) (`1, {true})

(`2, {p 6= 0}) (`2, {true})

(`3, {p 6= 0})

(`4, {p 6= 0})

(`5, {p 6= 0}) (`5, {true})

(`6, {p 6= 0}) (`6, {true})

(`err, {false}) (`err, {true})

p != 0

n >= 0

n < 0

n >= 0

n < 0

p == 0

p != 0

n == 0
n != 0

p == 0

p != 0

p := 0

n := n-1 n := n-1

Matthias Heizmann Program Verification Summer Term 2021 432 / 507

Abstract reachability graph that is precise for
B = {p 6= 0, n = 0, n = −1, true, false}:

(`0, {true})

(`1, {p 6= 0}) (`1, {n = −1})

(`2, {p 6= 0}) (`2, {false})

(`3, {p 6= 0})

(`4, {p 6= 0 ∧ n = 0})

(`5, {p 6= 0}) (`5, {n = 0})

(`6, {p 6= 0}) (`6, {n = −1})

(`err, {false})

p != 0

n >= 0 n >= 0

p != 0

n == 0

p := 0

n != 0

p == 0

n := n-1 n := n-1

n < 0 n < 0

Matthias Heizmann Program Verification Summer Term 2021 433 / 507

The CEGAR Approach (Pseudocode)

Step 1: Set B to the empty set.

Step 2: Construct an abstract reachbility graph ARG that is precise
for B.

Step 3: Check if ARG is safe.
If yes, report that P satisfies its specification and return.
If no, construct an error trace π of ARG .

Step 4: Check is π is feasible.
If yes, report that P does not satisfy its specification,
construct an execution for π, and return.
If no, construct an infeasibility proof {ϕ0}, . . . , {ϕn} for π,
add the set of formulas {ϕ0, . . . , ϕn} to B, and continue
with Step 2.

Matthias Heizmann Program Verification Summer Term 2021 434 / 507

The CEGAR Approach (Diagram)

program P

“P is correct” “P is incorrect”

Is ARG(P, B) a proof
of correctness?
Is ARG(P, B) a proof
of correctness? is π feasible ?is π feasible ?

no

pick new error trace πpick new error trace π

no

construct infeasiblity proof for π
add formulas to B

construct infeasiblity proof for π
add formulas to B

yes yes

B := ∅

where ARG (P,B) is an abstract reachability graph of P that is precise for B.
Matthias Heizmann Program Verification Summer Term 2021 435 / 507

Lemma

Let π be a trace. If {ϕ0}, . . . , {ϕn} is an infeasibility proof for π and
B ⊇ {ϕ0, . . . ϕn} then π is not an error trace in an abstract reachability
graph that is precise for B.

Proof. Let (AC ,T) be an abstract reachability graph that is precise for B.
We prove by induction over the length k of prefixes of the trace
π = st1, . . . , stn the following. If there is a path (`1, {ψ1}), . . . , (`k , {ψk})
such that ((`i , {ψi}), sti , (`i+1, {ψi+1})) ∈ T for i ∈ {1, . . . , k} then
{ψk} ⊆ {ϕk}.
We conclude that there is no path for π or that for the last element of the
path (`n, {ψn}) the formula ψn is equivalent to false and hence (`n, {ψn})
is not an abstract error configuration.

Theorem (Progress property)

If an algorithm follows the CEGAR approach and π is the error trace that
is analyzed in iteration i then π will not be an error trace of the abstract
reachability graph in further iterations.

Matthias Heizmann Program Verification Summer Term 2021 436 / 507

The theorem in the preceding slide is stated rather informally ..

Matthias Heizmann Program Verification Summer Term 2021 437 / 507

Shortcomings of predicate abstraction

We need a “good” set of formulas B .

My opinion:

I yet, no good “solution” known

I many promising approaches that mitigate the problem

I for every program that was considered, someone found an
algorithm that works for this program

Matthias Heizmann Program Verification Summer Term 2021 438 / 507

Shortcomings of predicate abstraction

The computation of sp#
B is costly.

Computed in every iteration, for every abstract configuration, one SMT solver call per element
of B. Especially costly for “expensive” SMT theories or theory combinations, e.g., floats, bitvectors, and

arrays.

Reminder (Abstract Strongest Post)

sp#
B ({ψ}, st) = {

∧
{ϕ ∈ B | sp({ψ}, st) ⊆ {ϕ}}}

Optimizations:

I Use different sets B for different locations.

I Do not use general SMT formulas and an SMT solver, but certain classes of formulas
(“domains”, e.g., intervals, octagon, polyhedra) and specialized algorithms for

construction of sp#
B .

I Do not construct ARG explicitly. Construct a tree that represents the breadth-first search
for new counterexamples. Label nodes with formulas. Reuse tree in next iteration.

I Use the partial order on formulas induced by implication. If there are two nodes (`, {ϕ1})
and (`, {ϕ2}) such that ϕ2 � ϕ1, we can ignore (`, {ϕ2}). We say that (`, {ϕ2}) is already
“covered” by (`, {ϕ1}).

Matthias Heizmann Program Verification Summer Term 2021 439 / 507

Section 18

Trace Abstraction

Matthias Heizmann Program Verification Summer Term 2021 440 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 441 / 507

Definition (Floyd-Hoare annotation)

A Floyd-Hoare annotation is a mapping
that assigns each location `i a formula ϕi

such that there is an edge

`iϕi `j ϕjstmt

only if the Hoare triple

{ ϕi } stmt { ϕj }
is valid.

Theorem
Given a program P, if there is a
Floyd-Hoare annotation such that

I every initial location is labeled with
true and

I every error location is labeled with
false

then P is safe.

Example:
Floyd-Hoare annotation for Pgoanna

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

true

p 6= 0 ∨ n = −1

p 6= 0

true

false

n = 0

p 6= 0 ∨ n = 0

Matthias Heizmann Program Verification Summer Term 2021 442 / 507

Idea

While analyzing a program P, consider automata whose alphabet Σ is the
set of all statements that occur in P’s control-flow graph.

Define a Floyd-Hoare annotation for such an automaton analogously to
the definition of a Floyd-Hoare annotation for a control-flow graph.

Definition

We call an automaton A = (Q,Σ,∆,Qinit,F) a Floyd-Hoare automaton if
there exists a Floyd-Hoare annotation β : Q → Fmrl(V) such that

I β(q) = true for all q ∈ Qinit and

I β(q) = false for all q ∈ F .

Theorem

Every trace that is accepted by a Floyd-Hoare automaton is infeasible.

Matthias Heizmann Program Verification Summer Term 2021 443 / 507

Let AP be the automaton whose graph structure is similar to the
control-flow graph.

Theorem

If there are Floyd-Hoare automata A1, . . . ,An such that the inclusion

L(AP) ⊆ L(A1) ∪ . . . ∪ L(An)

holds then the program P is safe.

Matthias Heizmann Program Verification Summer Term 2021 444 / 507

We’ve omitted the proofs of the previous two theorems in the lecture.
However, they are not difficult:

I Every trace that is accepted by a Floyd-Hoare automaton is
infeasible. Proof: Let τ be a trace that is accepted by a
Floyd-Hoare automaton A with annotation β. Then there exists
an accepting run q0 . . . qn for τ . By the definition of Floyd-Hoare
automata, β(q0) . . . β(qn) is an infeasibility proof for τ .

I The second theorem follows directly: Every error trace in P is
accepted by one of the Floyd-Hoare automata Ai . Thus it is
infeasible, and thus no error configuration can be reached.

Matthias Heizmann Program Verification Summer Term 2021 445 / 507

New View on Programs

“A program defines a language over the alphabet of statements.”

I Set of statements: alphabet of formal language
e.g., Σ = { p != 0 , n >= 0 , n == 0 , p := 0 , n != 0 ,

p == 0 , n-- , n < 0 , }

I Control flow graph: automaton over the alphabet of statements

I Error location: accepting state of this automaton

I Error trace of program: word accepted by this automaton

Matthias Heizmann Program Verification Summer Term 2021 446 / 507

Note that in this formalism, infeasible traces (i.e., traces for which
there exists no execution of the program P) may still be accepted by
the automaton AP . The finite automaton cannot distinguish between
feasible and infeasible traces.

In fact, the verification task consists precisely of showing that all the
traces accepted by AP are infeasible.

Matthias Heizmann Program Verification Summer Term 2021 447 / 507

Trace Abstraction: Example

1 assume p != 0;

2 while (n >= 0) {

3 assert p != 0;

4 if (n == 0) {

5 p := 0;

6 }

7 n := n - 1;

8 }

Source Code

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

p != 0

n >= 0

p == 0

Control Flow Graph

Matthias Heizmann Program Verification Summer Term 2021 448 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions
I merge states with same

annotation

p != 0

n >= 0

p == 0

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions
I merge states with same

annotation

p != 0

n >= 0

p == 0

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions
I merge states with same

annotation

p != 0

n >= 0

p == 0

true

p 6= 0

p 6= 0

false

XXX

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions

I merge states with same
annotation

{ p 6= 0 } n-- { p 6= 0 } is valid Hoare triple

{ p 6= 0 } n != 0 { p 6= 0 } is valid Hoare triple

{ p 6= 0 } n >= 0 { p 6= 0 } is valid Hoare triple

p != 0

n >= 0

p == 0

true

p 6= 0

p 6= 0

false

XXX

n != 0

n--

n >= 0

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions

I merge states with same
annotation

p != 0

n >= 0

p == 0

true

p 6= 0

p 6= 0

false

XXX

all \{ p := 0 }

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions

I merge states with same
annotation

p != 0

n >= 0

p == 0

true

p 6= 0

p 6= 0

false

XXX

all \{ p := 0 }

all

all \{ p := 0 }

all

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

1. take trace π1

2. consider trace as automaton A1

3. analyze correctness of A1,
compute Floyd-Hoare
annotation

4. generalize automaton A1

I add transitions
I merge states with same

annotation

q0true

q1p 6= 0

q2false

all

all

p != 0

p == 0

all \{ p := 0 }

XXX

Matthias Heizmann Program Verification Summer Term 2021 449 / 507

Trace Abstraction: Example

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

p != 0

n >= 0

n == 0

p := 0

n-- p == 0

?
program P

q0

q1

q2

all

all

p != 0

p == 0

all \{ p := 0 }

XXX
automaton A1

Consider only traces in
set theoretic difference
L(AP) \ L(A1).

AP

A1

Matthias Heizmann Program Verification Summer Term 2021 451 / 507

Trace Abstraction: Example

1. take trace π2

2. consider trace as automaton A2

3. analyze correctness of A2,
compute annotation

4. generalize automaton A2

I add transitions
I merge states with same

annotation

p != 0

n >= 0

n == 0

p := 0

n--

n >= 0

p == 0

Matthias Heizmann Program Verification Summer Term 2021 453 / 507

Trace Abstraction: Example

1. take trace π2

2. consider trace as automaton A2

3. analyze correctness of A2,
compute annotation

4. generalize automaton A2

I add transitions
I merge states with same

annotation

p != 0

n >= 0

n == 0

p := 0

n--

n >= 0

p == 0

Matthias Heizmann Program Verification Summer Term 2021 453 / 507

Trace Abstraction: Example

1. take trace π2

2. consider trace as automaton A2

3. analyze correctness of A2,
compute annotation

4. generalize automaton A2

I add transitions
I merge states with same

annotation

p != 0

n >= 0

n == 0

p := 0

n--

n >= 0

p == 0

true

true

true

n = 0

n = 0

n = −1

false

false

XXX
Matthias Heizmann Program Verification Summer Term 2021 453 / 507

Trace Abstraction: Example

1. take trace π2

2. consider trace as automaton A2

3. analyze correctness of A2,
compute annotation

4. generalize automaton A2

I add transitions
I merge states with same

annotation

q0

q1

q2

q3

all

all

n == 0

n--

n >= 0

all \{ n-- }

all \{ n-- }

XXX
Matthias Heizmann Program Verification Summer Term 2021 453 / 507

Trace Abstraction: Example

`0

`1

`2

`3

`4

`5

`err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

?
program P

q0

q1

q2

all

all

p != 0

p == 0

all \{ p := 0 }

XXX
automaton A1

q0

q1

q2

q3

all

all

n == 0

n--

n >= 0

all \{ n-- }

all \{ n-- }

XXX
automaton A2

L(AP) ⊆ L(A1) ∪ L(A2)

Matthias Heizmann Program Verification Summer Term 2021 454 / 507

Trace Abstraction: Verification Algorithm

program P

“P is correct” “P is incorrect”

L(AP) ⊆ L(A1) ∪ · · · ∪ L(An)L(AP) ⊆ L(A1) ∪ · · · ∪ L(An) is π feasible ?is π feasible ?

no

pick new error trace πpick new error trace π

no

construct infeasiblity proof for π
construct generalized automaton Ai

construct infeasiblity proof for π
construct generalized automaton Ai

yes yes

Matthias Heizmann Program Verification Summer Term 2021 455 / 507

Program Verification
Summer Term 2021

Lecture 23: Invariant Synthesis

Matthias Heizmann

Monday 12th July

Matthias Heizmann Program Verification Summer Term 2021 456 / 507

Section 19

Constraint-based Invariant Synthesis

Matthias Heizmann Program Verification Summer Term 2021 457 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 458 / 507

Motivation Part I

The next slide motivates the general idea of invariant synthesis.

The theorem that we revisit on this slide says that a Floyd-Hoare annotation of a
certain form is a sufficient criterion for safety of the analyzed program.

In the violet box we restate this sufficient criterion by expanding the definition of a
Floyd-Hoare annotation. We replaced all statements on the validity of a Hoare triple
{ϕ}, st, {ϕ′} by the equivalent statement that the inclusion sp({ϕ}, st) ⊆ {ϕ′} holds.

In the orange box we generalize this sufficient condition from sets of states that are
denoted by a formula to arbitrary sets, furthermore we expand the definition of the
inclusion and the strongest postcondition.

On the right we see an example of a control-flow graph and an instantiation of the
violet box for this control-flow graph. We note that we picked this control-flow
graph because of its simplicity but there is no Boostan program that has this
control-flow graph.

Matthias Heizmann Program Verification Summer Term 2021 459 / 507

Reminder (Theorem)

Given a program P, if there is a Floyd-Hoare
annotation such that

I every initial location is labeled with true and

I every error location is labeled with false

then P is safe.

There exist formulas ϕ`1 , . . . , ϕ`n such that

I ϕ`init is true

I for each (`, st, `′) ∈ ∆ : sp({ϕ`}, st) ⊆ {ϕ`′}
I for each ` ∈ Locerr : ϕ` is false

`1ϕ1

`2ϕ2

`3ϕ3

x := 5

x == -1

x := x+1

ϕ1 is true
sp({ϕ1}, x := 5) ⊆ {ϕ2}
sp({ϕ2}, x := x + 1) ⊆ {ϕ2}
sp({ϕ2}, x == −1) ⊆ {ϕ3}
ϕ3 is false

There exist sets of states S`1 , . . . , S`n such that

I S`init is SV,µ

I for each (`, st, `′) ∈ ∆ : for all s ∈ SV,µ.s ∈ S` and (s, s ′) ∈ [[st]] implies s ′ ∈ S`′

I for each ` ∈ Locerr : S` is ∅

Matthias Heizmann Program Verification Summer Term 2021 460 / 507

Motivation Part II

The presentation on the preceding slide gives rise to the following question:

“Can we formalize the condition in the violet box or the condition in
the orange box as a formula in some logic and obtain a Floyd-Hoare
annotation as a satisfying assignment of this formula?”

In this course we will consider possibilities to formalize the condition (violet box,
orange box) as an SMT formula. There are two obstacles.

Obstacle 1: The relation [[st]] that defines the meaning of a statement st is not
given as a formula.

Obstacle 2: The condition quantifies over states, sets of states and both sorts are
related via the ’is element’ relation. This is usually impossible in
first-order logic and can only be done in second-order logic.

On the next slide we demonstrate how we overcome Obstacle 1. We define the
transition formula which is a formula that denotes the relation [[st]] for a given
statement st. We note that such a formula does not always exist (difficult to prove)
and is not unique (make yourself an example).
The schematic examples show that for every simple statement there exists a
transition formula. (We call the transition formulas given in the table canonical
transition formulas.) Since a control-flow graph contains only simple statements we
overcame Obstacle 1.

Matthias Heizmann Program Verification Summer Term 2021 461 / 507

Definition (Transition Formula)

We call a formula τ over primed and unprimed program variables a transition
formula for st if the relation [[st]] coincides with the following relation.

{(s1, s2) | [[τ]]M,ρ is true and ρ = s1 ∪ prime(s2)}

Example

statement st canonical transition formula τst
x := expr; x ′ = expr ∧

∧
v∈V ,v 6=x

v ′ = v

a[i] := expr; a′ = store(a, i , expr) ∧
∧

v∈V ,v 6=a

v ′ = v

havoc x;
∧

v∈V ,v 6=x

v ′ = v

assume expr; expr ∧
∧

v∈V
v ′ = v

Matthias Heizmann Program Verification Summer Term 2021 462 / 507

On the next slide we demonstrate a way to overcome Obstacle 2.

The quantification of set variables is existential and the outermost quantification in
the orange box. We can always drop the outermost existential quantification (we
introduce a Skolem constant24) by replacing the quantified variables by other
symbols and obtain an equisatisfiable formula.

If quantification is not required, we can use a predicate symbol to represent a set.
E.g., over the integers, the set of even numbers is a (resp. the only) satisfying
assignment for the predicate symbol p in the following formula.
∀x .p(x)↔ ∃y .x = 2 · y

Using these two obserservations, we rephrase the conditions from the orange box as
SMT formulas (see blue box in the next slide). In order to improve legibility we use
~v to denote the list of all program variables. We call these formulas constraints.

We note that the constraints do not encode the existence of a Floyd-Hoare
annotation but something weaker: for a Floyd-Hoare annotation we require
additionally that the solutions for sets of states can be represented as a FOL
formula.

24see Skolem normal form
Matthias Heizmann Program Verification Summer Term 2021 463 / 507

https://en.wikipedia.org/wiki/Skolem_normal_form

There exist p`1 , . . . , p`n such that

I ∀~v . p`init
(~v)↔ true

I
∧

(`,st,`′)∈∆

∀~v .∀~v ′. p`(~v) ∧ τst(~v , ~v ′)→ p`′(~v
′)

I
∧

`∈Locerr

∀~v . p`(~v)↔ false

Example:

`1ϕ1

`2ϕ2

`3ϕ3

x := 5;

x == -1

x := x+1

∀x .p`1 (x)↔ true
∀x , x ′. p`1 (x) ∧ x ′ = 5→ p`2 (x ′)
∀x , x ′. p`2 (x) ∧ x ′ = x + 1→ p`2 (x ′)
∀x , x ′. p`2 (x) ∧ x = −1 ∧ x ′ = x → p`3 (x ′)
∀x .p`3 (x)↔ false

We are searching for ϕi such that [[ϕi]] is a
solution for p`i .

In order to check satisfiability of the constraints above
we write an SMT-LIB script (see next slide) and pass
it to an SMT solver.

Matthias Heizmann Program Verification Summer Term 2021 464 / 507

1 ; A satisfying assingment for p1,p2 and p3 that can be denoted as

2 ; an SMT formula is a Floyd-Hore annotation for the running

3 ; example in the section Invariant Synthesis.

4 ;

5 ; Author: Matthias Heizmann (heizmann@informatik.uni-freiburg.de)

6 ; Date: 2019 -07-22

7

8 (set-logic UFLIA)

9

10 (declare-fun p1 (Int) Bool)

11 (declare-fun p2 (Int) Bool)

12 (declare-fun p3 (Int) Bool)

13

14 (assert (forall ((|x| Int)) (= (p1 |x|) true)))

15 (assert (forall ((|x| Int) (|x’| Int))

16 (=> (and (p1 |x|) (= |x’| 5)) (p2 |x’|))))

17 (assert (forall ((|x| Int) (|x’| Int))

18 (=> (and (p2 |x|) (= |x’| (+ |x| 1))) (p2 |x’|))))

19 (assert (forall ((|x| Int) (|x’| Int))

20 (=> (and (p2 |x|) (= |x| (- 1)) (= |x’| |x|)) (p3 |x’|))))

21 (assert (forall ((|x| Int)) (= (p3 |x|) false)))

22

23 (check-sat)

24 (get-model)

Matthias Heizmann Program Verification Summer Term 2021 465 / 507

The result is devastating. By today (2019-07-22) neither CVC425, nor Princess26, nor
SMTInterpol27, nor Z328 is able to provide a response for the check-sat command.
This means that our idea is rather useless, because the constraints are already too
complicated for small and simple control flow graphs.

(In case you are planning to do a PhD please note that this situation is typical. You had an idea.
It looked promising. You spend time and effort on the idea. It did not work out in practice.)

Now, our options are:

1. Wait (month, years, decades, ...) until SMT solvers are powerful enough.

2. Give up on this idea.

3. Find a simpler problem for which our approach works.

4. Get a brilliant idea.

We go for the third option...

25http://cvc4.cs.stanford.edu/web/
26http://www.philipp.ruemmer.org/princess.shtml
27https://ultimate.informatik.uni-freiburg.de/smtinterpol/
28https://github.com/Z3Prover/z3

Matthias Heizmann Program Verification Summer Term 2021 466 / 507

http://cvc4.cs.stanford.edu/web/
http://www.philipp.ruemmer.org/princess.shtml
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3

General idea:
Do not check if some Floyd-Hoare annotation exists, check only if some
Floyd-Hoare annotation of a specific form exists.

Instance of this idea that we pursue:
Replace each p`(~v) by a linear inequality whose variables are the variables
of the program and whose coefficients are the unknowns for which we
want to find a solution.
E.g., if our program has two integer variables x and y , then we replace the
predicate symbol p`(x , y) by

a` · x + b` · y + c` ≥ 0

+ The SMT solver does not have to find a solution for predicate
symbols but only for first-order variables a`, b`, c`.

- We can only find a Floyd-Hoare annotation β if for each ` ∈ Loc the
formula β(`) is a linear inequality.

We carry out this idea in the blue box on the next slide. In order to improve

legibility we consider the special case where the program has only one variable. The

extension to multiple variables is straightforward.

Matthias Heizmann Program Verification Summer Term 2021 467 / 507

There exist a`1 , . . . , a`n , b`1 , . . . , b`n such that

I ∀x . a`init
· x + b`init

≥ 0↔ true

I
∧

(`,st,`′)∈∆

∀x , x ′. a` · x + b` ≥ 0 ∧ τst(x , x ′)→ a`′ · x ′ + b`′ ≥ 0)

I
∧

`∈Locerr

∀x . a` · x + b` ≥ 0↔ false

`1a`1 · x + b`1 ≥ 0

`2a`2 · x + b`2 ≥ 0

`3a`3 · x + b`3 ≥ 0

x := 5;

x == -1

x := x+1

∀x .a`1x + b`1 ≥ 0↔ true

∀x , x ′. a`1 · x + b`1 ≥ 0 ∧ x ′ = 5
→ a`2 · x ′ + b`2 ≥ 0

∀x , x ′. a`2 · x + b`2 ≥ 0 ∧ x ′ = x + 1
→ a`2 · x ′ + b`2 ≥ 0

∀x , x ′. a`2 · x + b`2 ≥ 0 ∧ x = −1 ∧ x ′ = x
→ a`3 · x ′ + b`3 ≥ 0

∀x .a`3 · x + b`3 ≥ 0↔ false

Again, we write an SMT-LIB script (see next slide) and pass it to an SMT solver.

Matthias Heizmann Program Verification Summer Term 2021 468 / 507

1 ; Author: Matthias Heizmann (heizmann@informatik.uni-freiburg.de)

2 ; Date: 2019 -07-22

3 (set-logic UFNIA)

4

5 (declare-fun a1 () Int)

6 (declare-fun b1 () Int)

7 (declare-fun a2 () Int)

8 (declare-fun b2 () Int)

9 (declare-fun a3 () Int)

10 (declare-fun b3 () Int)

11

12 (assert (forall ((|x| Int))

13 (= (>= (+ (* a1 |x|) b1) 0) true)))

14 (assert (forall ((|x| Int) (|x’| Int)) (=>

15 (and (>= (+ (* a1 |x|) b1) 0) (= |x’| 5))

16 (>= (+ (* a2 |x’|) b2) 0))))

17 (assert (forall ((|x| Int) (|x’| Int)) (=>

18 (and (and (>= (+ (* a2 |x|) b2) 0)) (= |x’| (+ |x| 1)))

19 (>= (+ (* a2 |x’|) b2) 0))))

20 (assert (forall ((|x| Int) (|x’| Int)) (=>

21 (and (>= (+ (* a2 |x|) b2) 0) (= |x| (- 1)) (= |x’| |x|))

22 (>= (+ (* a3 |x’|) b3) 0))))

23 (assert (forall ((|x| Int))

24 (= (>= (+ (* a3 |x|) b3) 0) false)))

25

26 (check-sat)

27 (get-model)
Matthias Heizmann Program Verification Summer Term 2021 469 / 507

Again, the result is devastating. By today (2019-07-22) neither CVC429, nor
Princess30, nor Z331 is able to provide a response for the check-sat command.
This means that our idea is rather useless, because the constraints are already too
complicated for small and simple control flow graphs.

(In case you are planning to do a PhD please note that this situation is typical. You had an idea.
It looked promising. You spend time and effort on the idea. It did not work out in practice.)

Let us consider the constraints again and reflect why they are difficult to solve.

I Quantifier alternation. Since we are searching for a satisfying assignment of a non-closed

formula, the formula is implicitly existentially quantified and we have to solve a problem that

involves quantifier alternation.

I Nonlinear arithmetic (i.e., multiplication of variables).
Now, our options are:

1. Wait (month, years, decades, ...) until SMT solvers are powerful enough.

2. Give up on this idea.

3. Find a simpler problem for which our approach works.

4. Get a brilliant idea.

This time, we can go for the fourth option because someone already had a brilliant idea.

29http://cvc4.cs.stanford.edu/web/
30http://www.philipp.ruemmer.org/princess.shtml
31https://github.com/Z3Prover/z3

Matthias Heizmann Program Verification Summer Term 2021 470 / 507

http://cvc4.cs.stanford.edu/web/
http://www.philipp.ruemmer.org/princess.shtml
https://github.com/Z3Prover/z3

In the following lemma, A denotes a matrix and A · ~x ≤ ~b denotes a

conjunction of linear inequalities. E.g.,


1 0
−1 0
1 −1
−1 1

 · (x
x′

)
≤


−1
−1
0
0

 denotes the

conjunction x ≤ −1 ∧ −x ≤ −1 ∧ x − x ′ ≤ 0 ∧ x ′ − x ≤ 0 which is a transition
formula for the statement x==-1 .

Lemma (Farkas)

∃~x A · ~x ≤ ~b implies

∀~x (A · ~x ≤ ~b → ~c
ᵀ · ~x ≤ δ) iff ∃~λ (~λ ≥ 0 ∧ ~λᵀ · A = ~c

ᵀ∧ ~λᵀ · ~b ≤ δ)

We use this lemma to transform our formulas into equisatisfiable formulas
that are simpler for SMT solvers.
The left-hand side of the lemma’s succedent has the same form as our formulas.

First, we consider the subformula that has the form of the lemma’s antecedent. If

this subformula is unsatisfiable the implication holds trivially and can be replaced

by true. If this subformula is satisfiable, we can replace the formula by the

corresponding instance of the right-hand side of the lemma’s succedent. Hence, we

obtain formulas without quantifier alternation.

Matthias Heizmann Program Verification Summer Term 2021 471 / 507

Success
Using Farkas’ Lemma32 we can transfrom our constraints into a form such that SMT
solvers can find satisfying assignments.
We have not seen an example in the lecture but this transformation is implemented
in Ultimate and helped to find invariants for many examples.

Extension to more complex invariants
The limitation to annotations of the form a` · x + b` · y + c` ≥ 0 is very restrictive.
Using a single inequality we are not even able to state an equality like, e.g., x = 0.
A straightforward extension is to use a boolean combination of linear inequalities.
We note however that for Farkas’ Lemma we need a form that is very similar to a
conjunctive normal form and that hence the size of the final formula grows
exponentially in the size of this Boolean combination of linear inequalities.

References
The idea to use Farkas’ Lemma for solving universally quantified contraints was first
introduced by Colón and Sipma [tacas/ColonS01]. Their application was the
synthesis of linear ranking functions. The synthesis of invariants that we saw in the
lecture was published later by Colón, Sankaranarayanan and
Sipma [cav/ColonSS03]. An invited paper by Rybalchenko [cav/Rybalchenko10]
summarizes these approaches, and shows examples.

32Wikipedia: Julias Farkas 1847-1930
Matthias Heizmann Program Verification Summer Term 2021 472 / 507

https://en.wikipedia.org/wiki/Gyula_Farkas_(natural_scientist)

Program Verification
Summer Term 2021

Lecture 24: Termination

Matthias Heizmann

Wednesday 14th July

Matthias Heizmann Program Verification Summer Term 2021 473 / 507

Section 20

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 474 / 507

Outline

Introduction

Propositional Logic

First-Order Logic

First-Order Theories

SMT-LIB

Boogie and Boostan

Hoare Proof System

Ultimate Referee

Arrays

Boogie and Boostan – Part 2

Control-flow graphs

Predicate Transformers

Bounded Model Checking

Correctness Specification via Assert Statement

Abstractions – Part 1

Infeasibility Proofs

CEGAR

Trace Abstraction

Constraint-based Invariant Synthesis

Termination Analysis

Matthias Heizmann Program Verification Summer Term 2021 475 / 507

How should we define “termination” of a computer program?

We will next discuss four properties of programs.

Matthias Heizmann Program Verification Summer Term 2021 476 / 507

1. Can the program reach the exit location?
Is there some input for which the program reaches the exit location?

2. Can the program stop?
Is there some input for which the program stops?

3. Does the program always reach the exit location?
Does the program reach the exit location for all inputs?

4. Does the program always stop?
Does the program stop for all inputs?

Matthias Heizmann Program Verification Summer Term 2021 477 / 507

Results of the discussion:

I The properties are not stated precisely enough to give definite
answers.

I On Exercise Sheet 23 we define four properties of the Boostan
language and use the terminology from the definition of Boostan’s
semantics.

I The first two properties and the last two properties are
fundamentally different: we can state the first two using techniques
that we saw in this course. (E.g., if we want to check the first
property we could put an assert false at the end of the program.)

I Differences between “stopping” and “reaching the error location”.
In C: program crashing. In Boogie or Boostan: assume statements.

I If we consider Boostan programs without assume statements there
is no difference between Property 1 and Property 3 (resp.
Property 2 and Property 4).

I Property 4 is the property that we want to call “termination”. We
will give the formal definition for Boostan on the next slides.

Matthias Heizmann Program Verification Summer Term 2021 478 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

Infinite Executions

Let P = (V , µ, st) be a program and G = (Loc,∆, `init, `ex) be a
control-flow graph for P.

Definition (Infinite Execution)

We call a sequence of program configurations (`0, s0), . . . an infinite
execution of P if there exists an infinite sequence of statements st1 . . .
such that for each i ∈ N
I (`i , sti+1, `i+1) ∈ ∆ and

I (si , si+1) ∈ [[sti+1]]

Definition

We call P terminating if P does not have an infinite execution that starts
in an initial configuration.

Matthias Heizmann Program Verification Summer Term 2021 479 / 507

For the forthcoming definition of a ranking function we need the notion
of a well-founded relation which was introduced in Exercise Sheet 22.

Definition

Let X be a set. We call a binary relation R ⊆ X × X well-founded if there
is no infinite sequence x1, x2, . . . such that (xi , xi+1) ∈ R for all i ∈ N.

Matthias Heizmann Program Verification Summer Term 2021 480 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex22-short.pdf

Our main means for proving termination will be ranking functions. We
will first give a formal definition without further motivation and
discuss its applications afterwards.

Informally, a ranking function for a loop is a function whose value is
bounded from below but decreasing in every iteration. (Hence, we can
conclude by reductio ad absurdum that only a finite number of loop
iterations is possible).

On Wikipedia ranking functions are called Loop variants. In the
research community on termination analysis, the term ranking function
is however used more often.

Matthias Heizmann Program Verification Summer Term 2021 481 / 507

https://en.wikipedia.org/wiki/Loop_variant

Definition (Ranking Function)

Given a program P = (V , µ, st), a while loop while(expr){st} and a set
W together with a well-founded relation R ⊆W ×W , we call a function
f : SV,µ →W a ranking function if for each pair of states
(s, s ′) ∈ [[assume expr; st]] the relation (f (s), f (s ′)) ∈ R holds.

Example:

1 while (x + y < 100) {

2 x := x + 1;

3 }

If we choose (W ,R) as (N, >) then

f (s) = 100− s(x)− s(y)

is a ranking function for this program.
Notation:
In order to improve legibility, people usually write

f (x , y) = 100− x − y

instead of f (s) = 100− s(x)− s(y). In this course we will also use both
notations.

Matthias Heizmann Program Verification Summer Term 2021 482 / 507

In Exercise 2 ofExercise Sheet 23 the task was to find ranking functions
for programs.

In fact, if we require that a ranking function is a total function we
typically cannot use N as the range of the function.
We discuss the problem of a ranking function’s range a couple of slides
later.

Matthias Heizmann Program Verification Summer Term 2021 483 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

Question: Is every loop that has a ranking function terminating?

Answer: No. There might be a nontermating loop inside a the loop
that has a ranking function.

1 while (x < 100) {

2 x := x + 1;

3 while (y < 100) {

4 y := y -1;

5 }

6 }

Matthias Heizmann Program Verification Summer Term 2021 484 / 507

Theorem

Let P be a program. If every while loop of P has a ranking function then
P is terminating.

Proof. (Not given in the lecture)

(Informally) Assume there is an infinite execution (`0, s0), (`1, s1), . . . that starts in an

initial configuration. Let `′0, `
′
1, . . . be the subsequence of all locations that are loop

heads (definition of loop head was introduced on Exercise Sheet 23). Because of the

structure of control flow graphs the sequence `′0, `
′
1, . . . is an infinite subsequence (a

formal proof would need more details here). Because there a only finitely many different

locations in a control-flow graph, at least one loop head occurs infinitely often. Let ˆ̀ be

a loop head that occurs infinitely often in the sequence. Between each two visits of ˆ̀ the

ranking function of the corresponding loop is decreasing which is a contradiction to

well-foundedness.

Matthias Heizmann Program Verification Summer Term 2021 485 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

In the remaining section on termination, we will discuss the following
questions.

I Are ranking functions into (N, >) always convenient?

I How can we check if a function f is a ranking function?

I What if a ranking function is only decreasing for reachable states?

I How can we compute ranking functions?

I How can we build an algorithm for checking termination?

I How can we find nonterminating executions?

I What is more difficult? Safety or termination?

Matthias Heizmann Program Verification Summer Term 2021 486 / 507

Question: Are ranking functions into (N, >) always convenient?

Problem: Negative return value of function after the last loop iteration.

1 while (x>=0) {

2 x := x - 1;

3 }

For (N, >) the function
f (x) = x is not a ranking
function because after the

last loop iteration the
function returns −1.

f (x) = x + 1 is a ranking
function

1 while (x>=0) {

2 assume y >= 1;

3 x := x - y;

4 }

For (N, >) the function the
function f (x , y) = x is not a
ranking function.
f (x , y) = x + y is a ranking
function

1 while (x>=0) {

2 havoc y;

3 assume y >= 1;

4 x := x - y;

5 }

For (N, >) there is no
ranking function.

Solution: Do not use (N, >) but (Z, >N) whose relation we define as
follows.

x >N y iff x > y and x ∈ N

This relation also solves another problem: If we require that the function f is defined for

all states s ∈ SV,µ (i.e., f is a total function) then the functions that we saw so far were

in fact not well-defined.
Matthias Heizmann Program Verification Summer Term 2021 487 / 507

Question: How can we check if a function f is a ranking function?

We present a solution for the schematic
example on the right where we assume

1. we have one loop in the loop body,

2. the program’s variables are x1,. . .,xn,

3. that we can express the function as
an expression fexpr(x1,...,xn)

over the program’s variables, and

4. the range of f is Z and we consider
the well-founded ordering >N.

1 while (expr1) {

2 // outer loop body part 1

3 while (expr2) {

4 // inner loop body

5 }

6 //outer loop body part 2

7 }

1 oldf := fexpr(x1 ,..,xn);

2 while (expr1) {

3 // outer loop body part 1

4 while (expr2) {

5 // inner loop body

6 }

7 // outer loop body part 2

8 assert fexpr(x1 ,...,xn)<oldf && oldf >=0;

9 oldf := fexpr(x1 ,...,xn);

10 }

We introduce a new
variable oldf whose
values are integers and
transform the program
above to the program
on the left.
The function f is a
ranking function for
the outer while loop iff
the program on the
left is safe.

Matthias Heizmann Program Verification Summer Term 2021 488 / 507

On the preceding slide we made four assumptions.

I The generalization where we drop the first two assumptions is
obviously staightforward.

I The third assumption is a vital restriction since not every function
is computable (no proof given in lecture).

I Whenever there is a computable ranking function, there is also a
(computable) lexicographic ranking function (see Exercise 2 on
Exercise Sheet 23) where each lexicographic component is Z, >N.
If the function f is given in that form we can drop the fourth
assumption, introduce an additional variable for each lexicographic
component and modify lines 1,8, and 9 accordingly.

Matthias Heizmann Program Verification Summer Term 2021 489 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

Question: What if a ranking function is only decreasing for reachable
states? The discussion of this question was mainly done on Exercise Sheet 23.

Consider the following program which is obviously terminating.

1 assume(y >= 1);

2 while (x >= 0) {

3 x := x - y;

4 }

`1

`2`3 `4

y >= 1

x >= 0

x:=x-y

!(x >= 0)

Q: Is f (x , y) = x a ranking function for this loop?

A: No. The value of x is increasing if y is negative.

Q: Is there a ranking function that allows us to prove
termination of this program?

A: Our first definition of a ranking function refers only to a
loop. In order to prove termination of the program above, we
also have to take the reachable states into account.

Matthias Heizmann Program Verification Summer Term 2021 490 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

Definition (Loop Entry)

Given a while loop while(expr){st} and a control-flow graph
G = (Loc,∆, `init, `ex) for this while loop, we call `init the entry location of
the while loop.

If we would do this section with more formal rigor, we would redo the
definition of a control flow graph and add to the tuple (Loc,∆, `init, `ex)
a partial function that maps entry locations to the respective while
loops.

Matthias Heizmann Program Verification Summer Term 2021 491 / 507

Definition (Ranking Function)

Given a program P = (V , µ, st), a Floyd-Hoare annotation β for P, a
while loop while(expr){st} whose loop head is the location `, and a set
W together with a well-founded relation R ⊆W ×W , we call a function
f : SV,µ →W a ranking function if for each pairs of states where
s ∈ {β(`)} and (s, s ′) ∈ [[assume expr; st]] the relation
(f (s), f (s ′)) ∈ R holds.

Theorem

Let P be a program and β be a Floyd-Hoare annotation for P. If every
while loop of P has a ranking function for β then P is terminating.

Proof. (Not given in the lecture)
Analogously to the proof for the theorem on termination that does not yet
have a name. Additionally we have to argue that the Floyd-Hoare
annotation denotes a superset of the reachable states at each location.

Matthias Heizmann Program Verification Summer Term 2021 492 / 507

Question: How can we compute ranking functions?

I For general programs: very difficult.
Although there is some research that follows this direction [popl/CousotC12,

esop/UrbanM14, tacas/UrbanGK16]. See e.g., the Function tool of Caterina

Urban.

I For infinite traces: sometimes doable
For several termination analyses TODO cite some it is sufficient to compute

ranking functions for ultimately periodic traces. An ultimately periodic trace is

an infinite trace in which some (finite) sequence of statements is repeated

infinitely often. E.g., the trace where x>0 y>0 y:=y-1 is repeted infinitely

often is an ultimately periodic trace of the Program P2 from Exercise 2 on

Exercise Sheet 23. This ultimately periodic trace is then considered as a

program that consists of a single while loop. For programs of this form several

approaches are available [tacas/ColonS01, vmcai/PodelskiR04,

cav/BradleyMS05, tacas/CookKRW10, popl/Ben-AmramG13,

atva/HeizmannHLP13, tacas/LeikeH14, cav/Ben-AmramG17]. We outline

the basic idea of these approaches on the next slides.

Matthias Heizmann Program Verification Summer Term 2021 493 / 507

https://www.di.ens.fr/~urban/FuncTion.html
https://www.di.ens.fr/~urban/FuncTion.html
http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

I “Synthesize” ranking functions analogously to the synthesis of invariants.

I Compute one transition formula τloop for all statements on the path from the
loop entry to the loop entry.

I Do not set up constraints that encode the existence of a general ranking
function. Set up constraints that encode the existence of a ranking function
that has a certain form.

I If the variables of the program are x and y and rx , ry , r0 ∈ Z then we call
rx · x + ry · y + r0 a linear function.

Constraints for the existence of a linear ranking function.

There exist rx , ry , r0 such that
I ∀x , y , x ′, y ′. τloop(x , x ′)→ (rx · x + ry · y + r0)− (rx · x ′+ ry · y ′+ r0) ≥ 1
I ∀x , y , x ′, y ′. τloop(x , x ′)→ rx · x + ry · y + r0 ≥ 0

The first line states that the function f (x, y) = rx · x + ry · y + r0 is decreasing in every interation.
The second line states that the function f (x, y) = rx · x + ry · y + r0 is bounded from below.

I Use Farkas’ Lemma to simplify the constraints.

I Apply an SMT solver to the resulting contraints. E.g., in the schematic
example above we use the satisfying assignments to rx , ry , r0 to build our
linear ranking function.

Matthias Heizmann Program Verification Summer Term 2021 494 / 507

Usually, the part of an ultimately periodic trace that is infinitely often repeated is
preceded by a sequence of statements. E.g., if you consider the (there is only one)
infinite trace that starts at the initial location of the program from Exercise 4 on
Exercise Sheet 23 the infinite repetition of x>=0 x:=x-y is preceded by y>=1 .

We translate these infinte traces into a
while loop that is preceded by a sequence
of statements and call these programs
lasso programs because their control
flow graphs have the shape of a lasso.

`0

...

`k

`k+1

.

`k+m

st1

stk

stk+1stk+m+1

Matthias Heizmann Program Verification Summer Term 2021 495 / 507

http://www.informatik.uni-freiburg.de/~heizmann/2021ProgramVerification/pvex23.pdf

In lasso programs the loop sometimes does not have a ranking function but there
is a ranking function for the combination of the loop and a given Floyd-Hoare
annotation.
See discussion on ranking functions for reachable states.

For these program we synthesize a ranking function together with a loop
invariant [cav/BradleyMS05, atva/HeizmannHLP13].
The constraints for the special case where we are searching for a ranking function
of the form ~r

ᵀ · ~v + r0 and an invariant of the form ~s
ᵀ · ~v + s0 are given below.

In order to shorten the presentation, we use ~rᵀ to denote the coefficients of the ranking function and ~sᵀ to

denote the coefficients of the invariant. We use τstem to denote a transition formula of the sequential

composition of all statements before the loop.

There exist ~r , r0, ~s, s0 such that

I ∀~v~v ′. τstem(~v , ~v ′)→ ~s
ᵀ · ~v ′ + s0 ≥ 0

I ∀~v~v ′. ~sᵀ · ~v + s0 ≥ 0 ∧ τloop(~v , ~v ′)→ ~s
ᵀ · ~v ′ + s0 ≥ 0

I ∀~v~v ′. ~sᵀ · ~v + s0 ≥ 0 ∧ τloop(~v , ~v ′)→ ~r
ᵀ · ~v − ~rᵀ · ~v ′ ≥ 1

I ∀~v~v ′. ~sᵀ · ~v + s0 ≥ 0 ∧ τloop(~v , ~v ′)→ ~r
ᵀ · ~v + r0 ≥ 0

Matthias Heizmann Program Verification Summer Term 2021 496 / 507

Synthesis of ranking functions available in Ultimate: LassoRanker

I Supports synthesis of ranking functions together with
invariants [atva/HeizmannHLP13] and various kinds of ranking
functions [tacas/LeikeH14]. E.g., linear ranking functions, nested
ranking functions, multiphase ranking functions, lexicographic ranking
functions or piecewise ranking funtions. Implements an approach
based on trace abstraction [cav/HeizmannHP14,
pldi/ChenHLLTTZ18] that uses Büchi automata.

I Frontend currently supports the languages Boogie and C.

I Available via web interface.

Matthias Heizmann Program Verification Summer Term 2021 497 / 507

https://ultimate.informatik.uni-freiburg.de/LassoRanker/

Question: How can we build an algorithm for checking termination?

Basic idea of the approach of the Terminator tool [pldi/CookPR06].

Iteratively collect ranking functions until termination of all loops is shown.

1. Start with the empty set of ranking functions.

2. Pick an ultimately periodic trace for which termination is not yet
shown (if termination is not yet proven).

3. Compute a ranking function for this trace and add it to our collection
(if the trace does not have in infinite execution).

4. Check if the collection of ranking functions is sufficient to prove
termination and continue with the second step.

A strength of Terminator’s approach is that it does not need one (possibly

complicated) ranking function for each loop but that it can use a combination of

several ranking functions to prove termination of a single loop. The theoretical basis

for this are disjunctively well-founded transition invariants [lics/PodelskiR04]. In

this lecture we will only demonstrate the basic idea on one example.

Matthias Heizmann Program Verification Summer Term 2021 498 / 507

Let us prove that the program whose code is
depicted on the right is terminating.
The if (*) means that the computer which runs
the program can nondeterministically pick one of
the two branches. This is a syntax of Boogie that
we did not introduce in Boostan.
We will need three iterations and two ranking
functions.

1 while (x>0 && y>0) {

2 if (*) {

3 x := x-1;

4 havoc y;

5 } else {

6 y := y-1;

7 }

8 }

Initially, our set of ranking functions is emtpy. We construct the first program
depicted on the next slide and pass it to a tool that checks safety (resp. that every
assert statement is valid). The safety checker tells us that the assert is reachable via
the if-branch and we conclude that there is an ultimately periodic infinite trace that
repeats the if-branch. We pass this trace to a tool that infers ranking functions and
obtain f 1(x , y) = x .

In the second iteration we construct the second program of the next slide in order to
check whether f 1 is sufficient to prove termination. This second safety check looks
similar to the check that we discussed a few slides ago but the (re-)initialization of
the oldf1 variable is done nondeterministically. The safety checker tells us that the
assert can be violated by an execution that takes the else branch. We conclude that
there is an ultimately periodic trace that repeats the else-branch whose termination
cannot be shown by the ranking function f 1. We pass this trace to a tool that infers
ranking functions and obtain f 2(x , y) = y .

Matthias Heizmann Program Verification Summer Term 2021 499 / 507

In the third iteration we construct the third program of the next slide in order to
check whether the combination of f 1 and f 2 is sufficient to prove termination. The
safety checker tells us that the assert statement is valid and we conclude termination
of the original program.

We note that the expression of the assert statement is a disjunction; we do not
require that both ranking functions are decreasing, we only require that at least one
of ranking function is decreasing. For concluding termination the nondeterministic
assignments to oldf1 and oldf1 are vital. The safety proof does not only show that
in each iteration the function f 1 or the function f 2 is decreasing, the safety proof
shows that between every two (not necessarily consecutive) visits of the loop head
the function f 1 or the function f 2 is decreasing.

Matthias Heizmann Program Verification Summer Term 2021 500 / 507

1 while (x>0 && y>0) {

2 if (*) {

3 x := x-1;

4 havoc y;

5 } else {

6 y := y-1;

7 }

8 assert false;

9 }

1 if (*) {

2 oldf1 := f1(x,y);

3 }

4 while (x>0 && y>0) {

5 if (*) {

6 x := x-1;

7 havoc y;

8 } else {

9 y := y-1;

10 }

11 assert oldf1 > f1(x,y) &&

oldf1 >= 0;

12 if (*) {

13 oldf1 := f1(x,y);

14 }

15 }

1 if (*) {

2 oldf1 := f1(x,y);

3 oldf2 := f2(x,y);

4 }

5 while (x>0 && y>0) {

6 if (*) {

7 x := x-1;

8 havoc y;

9 } else {

10 y := y-1;

11 }

12 assert (oldf1 > f1(x,y) &&

oldf1 >= 0)

13 || (oldf2 > f2(x,y) &&

oldf2 >= 0);

14 if (*) {

15 oldf1 := f1(x,y);

16 oldf2 := f2(x,y);

17 }

18 }

f 1(x , y) = x
f 2(x , y) = y

Matthias Heizmann Program Verification Summer Term 2021 501 / 507

Development of Termination has be discontinued, successor is the T2 tool.
There are several other tools and approaches for termination analysis. TODO cite some

Termination analysis available in Ultimate: Büchi Automizer

I Implements an approach based on trace
abstraction [cav/HeizmannHP14, pldi/ChenHLLTTZ18] that uses
Büchi automata.

I Frontend currently supports the languages Boogie and C.

I Won the termination category at the Competition on Software
Verification (SV-COMP) several times.

I Available via web interface. (Because of a bug, one has to use the
command line version to see the ranking functions)

Matthias Heizmann Program Verification Summer Term 2021 502 / 507

https://github.com/mmjb/T2
https://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/

Question: How can we prove nontermination?

In the lecture, we discussed the poster on the Geometric
Nontermination Arguments approach [tacas/LeikeH18] very briefly.

Not relevant for exam. Mainly shown to attract students that like
linear algebra.

Matthias Heizmann Program Verification Summer Term 2021 503 / 507

http://www.informatik.uni-freiburg.de/~heizmann/poster/2018TACAS-Leike,Heizmann-GeometricNonterminationArguments-Poster.pdf
http://www.informatik.uni-freiburg.de/~heizmann/poster/2018TACAS-Leike,Heizmann-GeometricNonterminationArguments-Poster.pdf

Question: What is more difficult? Safety or termination?

For both kinds of properties it is undecidable whether the property holds
for a given program.

There exists a small program for which yet no one could prove or disprove
termination.

Given a starting value a0, let us consider the infinite series of integers a0, a1, . . .
such that

ai+1 =

{
ai/2 if ai is even

3 · ai + 1 if ai is odd

Collatz conjecture: For any starting value, the sequence will finally reach 1.

The Collatz conjecture is correct if and only if the
program on the right is terminating.
Although many people tried, yet no one could prove
or disprove the conjecture.
To the best of my knowledge, no small safety

problem with the same level of difficulty is known.

1 while (x != 1) {

2 if (x%2==0) {

3 x := x/2;

4 } else {

5 x := 3x+1

6 }

7 }

Matthias Heizmann Program Verification Summer Term 2021 504 / 507

https://en.wikipedia.org/wiki/Collatz_conjecture

References I

[1] Parosh Abdulla et al. “Optimal Dynamic Partial Order Reduction”. In: Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’14. New York, NY, USA: ACM, 2014, pp. 373–384.

[2] Dirk Beyer et al. “Correctness witnesses: exchanging verification results between
verifiers”. In: SIGSOFT FSE. ACM, 2016, pp. 326–337.

[3] Dirk Beyer et al. “Witness validation and stepwise testification across software verifiers”.
In: ESEC/SIGSOFT FSE. ACM, 2015, pp. 721–733.

[4] Franck Cassez and Frowin Ziegler. “Verification of Concurrent Programs Using Trace
Abstraction Refinement”. en. In: Logic for Programming, Artificial Intelligence, and
Reasoning. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, Nov. 2015,
pp. 233–248.

[5] Duc-Hiep Chu and Joxan Jaffar. “A Framework to Synergize Partial Order Reduction
with State Interpolation”. en. In: Hardware and Software: Verification and Testing.
Ed. by Eran Yahav. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 171–187.

[6] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. “A Calculus of Atomic Actions”. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’09. New York, NY, USA: ACM, 2009, pp. 2–15.

Matthias Heizmann Program Verification Summer Term 2021 505 / 507

References II

[7] Azadeh Farzan and Anthony Vandikas. “Automated Hypersafety Verification”. en. In:
Computer Aided Verification. Ed. by Isil Dillig and Serdar Tasiran. Lecture Notes in
Computer Science. Springer International Publishing, 2019, pp. 200–218.

[8] Cormac Flanagan and Patrice Godefroid. “Dynamic Partial-order Reduction for Model
Checking Software”. In: Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’05. New York, NY, USA: ACM, 2005,
pp. 110–121.

[9] Klaus v. Gleissenthall et al. “Pretend Synchrony: Synchronous Verification of
Asynchronous Distributed Programs”. In: Proc. ACM Program. Lang. 3.POPL (Jan.
2019), 59:1–59:30.

[10] Patrice Godefroid et al. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. Vol. 1032. Springer Heidelberg, 1996.

[11] C. Norris Ip and David L. Dill. “Better verification through symmetry”. en. In: Formal
Methods in System Design 9.1 (Aug. 1996), pp. 41–75.

[12] Vineet Kahlon, Chao Wang, and Aarti Gupta. “Monotonic Partial Order Reduction: An
Optimal Symbolic Partial Order Reduction Technique”. en. In: Computer Aided
Verification. Ed. by Ahmed Bouajjani and Oded Maler. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 398–413.

[13] K. Rustan M. Leino. “This is Boogie 2”. 2008.

Matthias Heizmann Program Verification Summer Term 2021 506 / 507

References III

[14] Richard J. Lipton. “Reduction: A Method of Proving Properties of Parallel Programs”.
In: Commun. ACM 18.12 (Dec. 1975), pp. 717–721.

[15] Susan Owicki and David Gries. “Verifying Properties of Parallel Programs: An Axiomatic
Approach”. In: Commun. ACM 19.5 (May 1976), pp. 279–285.

[16] B. Wachter, D. Kroening, and J. Ouaknine. “Verifying multi-threaded software with
impact”. In: 2013 Formal Methods in Computer-Aided Design. Oct. 2013, pp. 210–217.

[17] Yu Yang et al. “Automatic Discovery of Transition Symmetry in Multithreaded Programs
Using Dynamic Analysis”. en. In: Model Checking Software. Ed. by Corina S. Păsăreanu.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 279–295.

Matthias Heizmann Program Verification Summer Term 2021 507 / 507

	Introduction
	Some Motivation
	Program Verifier
	Motivation
	Challenges
	Content of this Course

	Propositional Logic
	First-Order Logic
	First-Order Theories
	Motivation
	T-Validity and T-Satisfiability
	Theory of Equality
	Theory of Rock-Paper-Scissors
	Decidability
	Natural Numbers and Integers
	Rationals and Reals
	Arrays
	Combination of Theories
	Decidability

	SMT-LIB
	Boogie and Boostan
	Boogie and Boostan
	Context-Free Grammars
	Syntax of Boostan
	Excursus: The semantics of C
	Relational Semantics of Boostan
	Precondition-Postcondition Pairs

	Hoare Proof System
	Introduction
	Rules of the Hoare Proof System
	Soundness of the Hoare Proof System

	Ultimate Referee
	Guide for Finding a Derivation in the Hoare Proof System
	Ultimate Referee

	Arrays
	Motivation for Adding new Features
	Arrays as Mathematical Objects
	The SMT Theory of Arrays
	Arrays in Boogie
	Arrays in Boostan

	Boogie and Boostan – Part 2
	Nondeterminism and Havoc statement

	Control-flow graphs
	Motivation
	Formal Definition
	Program Executions
	Proof of the Error Execution Theorem

	Predicate Transformers
	Motivation
	Strongest Post
	Excursus: Formulas and Sets of States
	Excursus: Quantifier Elimination
	Strongest Post And Formulas
	Weakest Precondition

	Bounded Model Checking
	Abstract Reachability Graph
	Precise Abstract Reachability Graph
	Algorithms for Constructing Graphs

	Correctness Specification via Assert Statement
	Abstractions – Part 1
	Infeasibility Proofs
	CEGAR
	Trace Abstraction
	Constraint-based Invariant Synthesis
	Termination Analysis

