
Dr. Matthias Heizmann
Dominik Klumpp

Hand in until 16:00 on June 16, 2021
Discussion: June 16, 2021

Tutorial for Program Verification
Exercise Sheet 14

In this exercise sheet we work with the control flow graphs. At the end, we have a bonus
exercise that deals with havoc and assume, and is meant to further your understanding

of these statements. You have extra time to submit solutions to this bonus exercise.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: CFG for Conditional Statement 2 Points
In the lecture, we defined the notion of a control-flow graph of a given statement. This
definition is not yet complete: We defined it for simple statements and for the sequential
composition. The conditional statement (if/else) and the while statement are still
missing. In this exercise, we define the control-flow graph for conditional statements:

Let st1, st2 be two statements. Let G1 = (Loc1,∆1, `1init, `
1
ex) be a control-flow graph for

st1, and let G2 = (Loc2,∆2, `2init, `
2
ex) be a control-flow graph for st2 such that Loc1 and

Loc2 are disjoint. Define a control-flow graph for if (expr) { st1 } else { st2 }.

The following bonus exercise is a bit different from the exercises we usually have.
While the lecture should give you enough background to understand the correct solu-
tion, finding such a correct solution is non-trivial. Don’t despair if you get stuck! But
if you are interested in the field of program verification and you like riddles, you might
enjoy puzzling it out. And you will improve your understanding of the semantics of
havoc and assume at the same time!

To give you enough time to try and solve this exercise, you have time to submit it
until 23rd June.

Exercise 2: Loop Transformation with Havoc and Assume 5 Bonus Points
Consider the program P1 = (V, µ1, T1) such that T1 is a derivation tree for the program
text on the right, where C1, C2 are boolean expressions which only use variables in V ,
and body1, body2 are program statements which only use variables in V .

1

while (C1) {

body1;

}

while (C2) {

body2;

}

ϕ0 � I1 I1 ∧ ¬C1 � ϕ1

ϕ1 � I2 I2 ∧ ¬C2 � ϕ2

{I1 ∧ C1} body1 {I1}
{I2 ∧ C2} body2 {I2}

havoc V’;

Vmiddle := V’;

while (C1 || C2 ’) {

i f (C1) {

body1;

}

i f (C2 ’) {

body2 ’;

}

}

assume V == Vmiddle;

V := V’;

Let us assume a Hoare proof for the program P1 and the precondition-postcondition
pair ({ϕ0}, {ϕ2}), which uses inductive invariants I1 and I2. In short, assume that the
implications and Hoare triples given above are correct, and that the formulas ϕ0, ϕ1, ϕ2,
I1 and I2 use only variables in V .

Using havoc and assume statements, we can transform the program on the left into
a new program P2 = (V ∪ V ′ ∪ Vmiddle , µ2, T2), where T2 is a derivation tree for the
program text on the right.1 The set of variables V ′ contains one variable v’ for every
v ∈ V , and similarly Vmiddle contains one variable vmiddle for every v ∈ V , such that
µ2(v’) = µ2(vmiddle) = µ2(v) = µ1(v).

The statement havoc V’; is shorthand for havoc v’; for all v ∈ V , similarly the state-
ment Vmiddle := V’; corresponds to vmiddle := v’; for all v ∈ V , and the statement
assume V == Vmiddle; is shorthand for assume

∧
v∈V (v = vmiddle);. Finally, C2’ and

body2’; correspond to C2 resp. body2; where every variable v has been replaced by v’.

Our goal is to construct a Hoare proof for the program P2 and the precondition-postcondition
pair ({ϕ0}, {ϕ2}), using only the formulas from the Hoare proof for P1, substitutions
thereof, and boolean combinations. In particular, give a formula I (a loop invariant) over
variables in V ∪ V ′ ∪ Vmiddle , such that the following Hoare triples are valid:

• {ϕ0} havoc V’; Vmiddle := V’; {I}

•
{
I ∧ (C1 ∨ C ′

2)
}

if (C1) { body1; } if (C2’) { body2’;}
{
I
}

• {I ∧ ¬(C1 ∨ C ′
2)} assume V == Vmiddle; V := V’; {ϕ2}

You do not have to prove the correctness of your invariant.

1This transformation is presented in the paper “A guess-and-assume approach to loop fusion for
program verification”, A. Imanishi, K. Suenaga and A. Igarashi. PEPM 2018.

2

