Tutorial for Program Verification
Exercise Sheet 14

In this exercise sheet we work with the control flow graphs. At the end, we have a bonus exercise that deals with havoc and assume, and is meant to further your understanding of these statements. You have extra time to submit solutions to this bonus exercise.

Submit your solution by uploading it as PDF in ILIAS.

Exercise 1: CFG for Conditional Statement

2 Points

In the lecture, we defined the notion of a control-flow graph of a given statement. This definition is not yet complete: We defined it for simple statements and for the sequential composition. The conditional statement (if/else) and the while statement are still missing. In this exercise, we define the control-flow graph for conditional statements:

Let st_1, st_2 be two statements. Let $G_1 = (Loc^1, \Delta^1, \ell^1_{\text{init}}, \ell^1_{\text{ex}})$ be a control-flow graph for st_1, and let $G_2 = (Loc^2, \Delta^2, \ell^2_{\text{init}}, \ell^2_{\text{ex}})$ be a control-flow graph for st_2 such that Loc^1 and Loc^2 are disjoint. Define a control-flow graph for if (expr) { st_1 } else { st_2 }.

Exercise 2: Loop Transformation with Havoc and Assume

5 Bonus Points

Consider the program $P_1 = (V, \mu_1, T_1)$ such that T_1 is a derivation tree for the program text on the right, where C_1, C_2 are boolean expressions which only use variables in V, and $body_1, body_2$ are program statements which only use variables in V.
Let us assume a Hoare proof for the program P_1 and the precondition-postcondition pair ($\{\varphi_0\}, \{\varphi_2\}$), which uses inductive invariants I_1 and I_2. In short, assume that the implications and Hoare triples given above are correct, and that the formulas $\varphi_0, \varphi_1, \varphi_2, I_1$ and I_2 use only variables in V.

Using havoc and assume statements, we can transform the program on the left into a new program $P_2 = (V \cup V' \cup V_{middle}, \mu_2, T_2)$, where T_2 is a derivation tree for the program text on the right. The set of variables V' contains one variable v' for every $v \in V$, and similarly V_{middle} contains one variable v_{middle} for every $v \in V$, such that $\mu_2(v') = \mu_2(v_{middle}) = \mu_2(v) = \mu_1(v)$.

The statement havoc V'; is shorthand for havoc v'; for all $v \in V$, similarly the statement $V_{middle} := v'$; corresponds to $v_{middle} := v'$; for all $v \in V$, and the statement assume $V == v_{middle}$; is shorthand for assume $\bigwedge_{v \in V}(v = v_{middle})$. Finally, C_2' and body2'; correspond to C_2 resp. body2; where every variable v has been replaced by v'.

Our goal is to construct a Hoare proof for the program P_2 and the precondition-postcondition pair ($\{\varphi_0\}, \{\varphi_2\}$), using only the formulas from the Hoare proof for P_1, substitutions thereof, and boolean combinations. In particular, give a formula I (a loop invariant) over variables in $V \cup V' \cup V_{middle}$, such that the following Hoare triples are valid:

- $\{\varphi_0\}$ havoc V'; $V_{middle} := v'$; $\{I\}$
- $\{I \land (C_1 \lor C_2')\}$ if (C1) { body1; } if (C2') { body2'; } $\{I\}$
- $\{I \land \neg(C_1 \lor C_2')\}$ assume $V == v_{middle}$; $V := v'$; $\{\varphi_2\}$

You do not have to prove the correctness of your invariant.

1This transformation is presented in the paper “A guess-and-assume approach to loop fusion for program verification”, A. Imanishi, K. Suenaga and A. Igarashi. PEPM 2018.