Prof. Dr. Andreas Podelski Matthias Heizmann 30.11.2011 Submission: 6.12.2011 at the beginning of the lecture

Tutorials for Program Verification Exercise sheet 6

Definition (propositional core) Let $\mathbf{qfForm}_{\mathcal{V}}$ be the set of quantifier-free formulas over the vocabulary \mathcal{V} . For a quantifier-free FOL formula ϕ the propositional core, denoted $propCore(\phi)$, is obtained by replacing each atomic formula of the form $P(t_1, \ldots, t_{ar(P)})$ by a propositional variable $X_{P(t_1,\ldots,t_{ar(P)})}$.

We formaly define the mapping $propCore(\phi) : \mathbf{qfForm}_{\mathcal{V}} \to \mathbf{Prop}$ recursively:

 $\begin{array}{ll} propCore(\bot) &= \bot \\ propCore(P(t_1, \dots, t_{ar(P)})) &= X_{P(t_1, \dots, t_{ar(P)})} \\ propCore(\neg \phi) &= \neg propCore(\phi) \\ propCore(\phi \odot \psi) &= propCore(\phi) \odot propCore(\psi) \end{array}$

where $\odot \in \{\land, \lor, \rightarrow\}$.

Exercise 1: Propositional Core

2+1 points

(a) Prove that the following holds for each theory \mathcal{T} and each quantifier-free formula ϕ .

If $propCore(\phi)$ is not satisfiable, then ϕ is not \mathcal{T} -satisfiable.

(Hint: Define a appropriate valuation ρ and prove by induction over the structure of quantifier-free formulas that for each \mathcal{T} -structure \mathcal{M} and each assignment α the following propriation holds: $\mathcal{M}, \alpha \models \phi$ iff $\rho \models propCore(\phi)$)

(b) Does the opposite direction also hold? Prove or give a counterexample for the following proposition.

If ϕ is not \mathcal{T} -satisfiable then $propCore(\phi)$ is not satisfiable.

Definition (minimal unsatisfiable core) Let Γ be a finite set of formulas such that the conjunction $\bigwedge_{\phi \in \Gamma} \varphi$ is unsatisfiable. A subset $\Gamma' \subseteq \Gamma$ is called *unsatisfiable core* of Γ if

 $\bigwedge_{\phi \in \Gamma'} \varphi \text{ is also unsatisfiable. An unsatisfiable core } \Gamma' \text{ is called minimal unsatisfiable core if}$

for each proper subset Γ'' of Γ' the conjunction $\bigwedge_{\phi \in \Gamma''} \varphi$ is satisfiable.

Exercise 2: Minimal Unsatisfiable Core

1+1 points

(a) Give a minimal unsatisfiable core for the following set of formulas.

$$\{ \neg (X \to \neg Z), \quad Y \to \neg U, \quad X \to Y, \quad X, \quad Z \to U \}$$

(b) Is the minimal unsatisfiable core of set of formulas unique? (Are there sets of formulas $\Gamma, \Gamma_1, \Gamma_2$ such that $\Gamma_1 \neq \Gamma_2$ but both Γ_1 and Γ_2 are minimal unsatisfiable cores of Γ ?)

Lets assume we have two tools. The first tool can decide satisfiability of propositional logic formulas. The second tool can decide \mathcal{T} -satisfiability for a conjunction of literals¹ and return a minimal unsatisfiable core if the conjunction is unsatisfiable. Then we can construct a third tool that can decide \mathcal{T} -satisfiability of quantifier free formulas by implementing the following algorithm.

Exercise 3: Basic SMT Solving Algorithm

Use the BASIC SMT SOLVING ALGORITHM to determine \mathcal{T}_E - satisfiability² of the following formula.

3 points

$$x = y \quad \land \quad y = z \quad \land \quad (f(x) \neq f(z) \ \lor \ (P(x) \land \neg P(z)))$$

Denote all your steps.

• If a propositional logical formula is satisfiable, give a satisfying valuation. If a propositional logical formula is unsatisfiable you may write down your proof, but you don't have to.

 $^{^1\}mathrm{A}$ literal is an atomic formulas or a negated atomic formula

 $^{{}^{2}\}mathcal{T}_{E}$ denotes the theory of equality

• If a conjunction of atomic FOL formulas is satisfiable, give a satisfying assignment. If a conjunction of atomic FOL formulas is unsatisfiable, you may write down your proof, but a explanation is also sufficient.

Exercise 4: Inductive Invariants

1+2 points

Consider the following program

$$Prog = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$$

where the tuple of program variables V is (pc, x, y, z), the initial condition φ_{init} is $pc = \ell_1$, the error condition φ_{err} is $pc = \ell_5$, and the set of transition relations \mathcal{R} contains the following transitions.

- (a) Is the complement of ρ_5 an inductive invariant³? If not, state a counterexample.
- (b) What is the weakest⁴ inductive invariant that is contained in the complement of φ_{err} (i.e., disjoint from φ_{err})?

Exercise 5: Construction of Weakest Inductive Invariant 2 bonus points Define a (possibly non-terminating) algorithm to construct the weakest inductive invariant that is contained in the complement of φ_{err} .

(Idea: eliminate states that can reach an error state.)

³Note that here, the term inductive invariant refers to the inductive invariant of a program (defined in the lecture on 28th November), not to the inductive invariant of a while loop (defined in the lecture on 8th November).

⁴We say that the formula ϕ is weaker than the formula ψ if ψ implies ϕ . An inductive invariant ϕ is the weakest inductive invariant if ϕ is implied by all other inductive invariants.