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Definition (propositional core) Let qfFormV be the set of quantifier-free formulas
over the vocabulary V . For a quantifier-free FOL formula φ the propositional core, denoted
propCore(φ), is obtained by replacing each atomic formula of the form P (t1, . . . , tar(P ))
by a propositional variable XP (t1,...,tar(P )).
We formaly define the mapping propCore(φ) : qfFormV → Prop recursively:

propCore(⊥) = ⊥
propCore(P (t1, . . . , tar(P ))) = XP (t1,...,tar(P ))

propCore(¬φ) = ¬propCore(φ)
propCore(φ� ψ) = propCore(φ)� propCore(ψ)

where � ∈ {∧,∨,→}.

Exercise 1: Propositional Core 2+1 points

(a) Prove that the following holds for each theory T and each quantifier-free formula φ.

If propCore(φ) is not satisfiable, then φ is not T -satisfiable.

(Hint: Define a appropriate valuation ρ and prove by induction over the structure
of quantifier-free formulas that for each T -structureM and each assignment α the
following propsition holds:M, α |= φ iff ρ |= propCore(φ) )

(b) Does the opposite direction also hold? Prove or give a counterexample for the
following proposition.

If φ is not T -satisfiable then propCore(φ) is not satisfiable.

Definition (minimal unsatisfiable core) Let Γ be a finite set of formulas such that
the conjunction

∧
φ∈Γ

ϕ is unsatisfiable. A subset Γ′ ⊆ Γ is called unsatisfiable core of Γ if∧
φ∈Γ′

ϕ is also unsatisfiable. An unsatisfiable core Γ′ is called minimal unsatisfiable core if

for each proper subset Γ′′ of Γ′ the conjunction
∧
φ∈Γ′′

ϕ is satisfiable.

Exercise 2: Minimal Unsatisfiable Core 1+1 points

(a) Give a minimal unsatisfiable core for the following set of formulas.

{ ¬(X → ¬Z), Y → ¬U, X → Y, X, Z → U }

(b) Is the minimal unsatisfiable core of set of formulas unique? (Are there sets of for-
mulas Γ,Γ1,Γ2 such that Γ1 6= Γ2 but both Γ1 and Γ2 are minimal unsatisfiable
cores of Γ?)



Lets assume we have two tools. The first tool can decide satisfiability of propositional
logic formulas. The second tool can decide T -satisfiability for a conjunction of literals1

and return a minimal unsatisfiable core if the conjunction is unsatisfiable. Then we can
construct a third tool that can decide T -satisfiability of quantifier free formulas by im-
plementing the following algorithm.

Basic SMT Solving Algorithm

Input: quantifier-free formula φinput

Output: Is φinput satisfiable? Yes/No

0: φ := φinput

1: while(true) do {

2: if propCore(φ) is unsatisfiable return No, φinput is unsatisfiable

3: Let ρ be a valuation such that Mρ |= propCore(φ)

4: Let {ψ1, . . . , ψn} be the set of atomic formulas that are subformulas of φ.

5:
Let {ψρ1 , . . . , ψρn} be the set
of formulas such that

ψρi =

{
ψi if propCore(ψi) ∈Mρ

¬ψi otherwise

6: if ψρ1 ∧ · · · ∧ ψρn is satisfiable return Yes, φinput is satisfiable

7: Let Γ be a minimal unsatisfiable core of {ψρ1 , . . . , ψρn}

8: φ := φ ∧ ¬(
∧
ψ∈Γ

ψ)

9: }

Exercise 3: Basic SMT Solving Algorithm 3 points
Use the Basic SMT Solving Algorithm to determine TE- satisfiability2 of the follo-
wing formula.

x = y ∧ y = z ∧ (f(x) 6= f(z) ∨ (P (x) ∧ ¬P (z)))

Denote all your steps.

• If a propositional logical formula is satisfiable, give a satisfying valuation. If a pro-
positional logical formula is unsatisfiable you may write down your proof, but you
don’t have to.

1A literal is an atomic formulas or a negated atomic formula
2TE denotes the theory of equality



• If a conjunction of atomic FOL formulas is satisfiable, give a satisfying assignment.
If a conjunction of atomic FOL formulas is unsatisfiable, you may write down your
proof, but a explanation is also sufficient.

Exercise 4: Inductive Invariants 1+2 points
Consider the following program

Prog = (V, pc, ϕinit ,R, ϕerr)

where the tuple of program variables V is (pc, x, y, z), the inital condition ϕinit is pc = `1,
the error condition ϕerr is pc = `5, and the set of transition relations R contains the
following transitions.

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z))

ρ2 = (move(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x, y, z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x, y, z))

ρ5 = (move(`3, `5) ∧ x+ 1 ≤ z ∧ skip(x, y, z))

`1

`2

y ≥ z

x < y ∧ x′ = x+ 1

`3

x ≥ y

`4

x ≥ z

`5

x < z

(a) Is the complement of ρ5 an inductive invariant3? If not, state a counterexample.

(b) What is the weakest4 inductive invariant that is contained in the complement of
ϕerr (i.e., disjoint from ϕerr)?

Exercise 5: Construction of Weakest Inductive Invariant 2 bonus points
Define a (possibly non-terminating) algorithm to construct the weakest inductive invari-
ant that is contained in the complement of ϕerr .
(Idea: eliminate states that can reach an error state.)

3Note that here, the term inductive invariant refers to the inductive invariant of a program (defined
in the lecture on 28th November), not to the inductive invariant of a while loop (defined in the lecture
on 8th November).

4We say that the formula φ is weaker than the formula ψ if ψ implies φ. An inductive invariant φ is
the weakest inductive invariant if φ is implied by all other inductive invariants.


