
Prof. Dr. Andreas Podelski
Matthias Heizmann

21.12.2011
Submission: 10.1.2012

at the beginning of the lecture

Tutorials for Program Verification
Exercise sheet 9

Exercise 1: Counterexample-guided Discovery of Predicates 3+1 points
In the lecture you have seen the function RefinePath which was used in the algorithm
AbstRefineLoop and returns a set of predicates Preds given a path ρ1, . . . , ρn.

(a) State a concrete algorithm for RefinePath. Your algorithm may return more than
n+ 1 predicates.

Consider again the program from exercise 4 of the sixth exercise sheet.

ρ1 = (move(`1, `2) ∧ y ≥ z ∧ skip(x, y, z))

ρ2 = (move(`2, `2) ∧ x+ 1 ≤ y ∧ x′ = x+ 1 ∧ skip(y, z))

ρ3 = (move(`2, `3) ∧ x ≥ y ∧ skip(x, y, z))

ρ4 = (move(`3, `4) ∧ x ≥ z ∧ skip(x, y, z))

ρ5 = (move(`3, `5) ∧ x+ 1 ≤ z ∧ skip(x, y, z))

`1

`2

y ≥ z

x < y ∧ x′ = x+ 1

`3

x ≥ y

`4

x ≥ z

`5

x < z

Let Predspc be the set of all predicates on the program counter.

Predspc = {pc = `1, pc = `2, pc = `3, pc = `4, pc = `5}

Given the path ρ1ρ2ρ3ρ5, your algorithm should return a set of predicates Preds such
that Preds ∪ Predspc is suffient to prove safety of the program i.e., every abstract
state returned by AbstReach(Preds∪Predspc) is disjoint from ϕerr (the set of error
states ϕerr is pc = `5).

Show that the predicates returned by your algorithm are sufficient to prove safety
of the program.

(b) State a different program and some path such that the predicates returned by your
algorithm are not sufficient to prove safety of this program. Explain!

Exercise 2: State Space Explosion 2 points + 1 bonus point
Consider the algorithm AbstReach (the version from Monday 12th December). Let
n = |Pred| be the number of predicates. Let m = |R| be the number of transitions of the
program.

(a) How many abstract reachable states (elements of ReachStates#) are there in the
worst case? Explain!

(b) How many times do we check validity of an implication ϕ |= p in the worst case?
Explain!

(c) Let us roughly estimate the maximal number of predicates a tool can deal with
(in the worst case). Consider the following setting: We have an implementation
of AbstReach that may use up to 4 gibibyte, one abstract state needs 32 byte
and we neglect the memory necessary for all other data (e.g., the Parent relation).
What is the maximal number of predicates nmax such that our implementation of
AbstReach does not run out of memory. Explain!

(d) Let us roughly estimate the runtime of AbstReach for nmax predicates. Consider
the following setting: We have m = 1000 relations. The theorem prover always needs
exactly one millisecond to decide validity of an implication ϕ |= p. If we neglect the
runtime of all components but the theorem prover. How much time does it take in
the worst case to compute the set of all reachable abstract states? Explain!

(e) Suggest an optimization for the AbstRefineLoop algorithm that can reduce the
number of abstract states.

Exercise 3: Execution of Trace Abstraction 3 points
Consider the following program and the corresponding control automaton AP .

int x, y, z, w;

void foo()

{

1: do {

2: z = 0;

3: x = y;

4: if (w == 17){

5: x++;

6: z = 1;

}

7: } while(x!=y)

8: assert (z != 1);

}

`2

`3

`4 `5

`6`7

`8

`err

z:=0

x:=y

w==17

x++

z:=1

w!=17

x==y

z==1

x!=y

Give two error traces π1, π2 and construct corresponding interpolant automata A1,A2

such that the inclusion L(AP) ⊆ L(A1) ∪ L(A2) holds.

Remark: We call a trace π infeasible if post(true, π) = false

Exercise 4: Interpolant Automata 2 points
Prove that an interpolant automaton accepts only infeasible traces.

