Generation of Verification Conditions (cont'd)

Andreas Podelski

November 21, 2011

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
» construct a backwards derivation

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
» construct a backwards derivation
» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
» construct a backwards derivation

» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» Hoare triple uses given postcondition and weakest precondition

» derivation unique

mechanization of correctness proof

» given a Hoare triple {¢} C {¢},
» construct a backwards derivation

» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» Hoare triple uses given postcondition and weakest precondition
» derivation unique

» verification condition = set of side conditions

weakest precondition wp(C,)

> Wp(Skipv ¢) = w

weakest precondition wp(C,)

» wp(skip, 1)) = v
> wp(x = e,9) = Yle/x]

weakest precondition wp(C,)

> wp(skip,) = ¢
> wp(x = e,) = 1le/x]
» wp(Cy; G, v) = wp(Cy,wp(Ca, 7))

weakest precondition wp(C,)

wp(skip, 1)) = 1)
wp(x = e, 1) = le/x]
wp(Cy 5 G, 9) = wp(Gy, wp(G, ¢))
wp(if b then C else G, 1) = (=bV 1) A (bV ¢2)

where
¢1 = wp(Cy, 1)
¢2 - Wp(C27 1/})

vV vV v v

weakest precondition wp(C,)

wp(skip, 1)) = 1)
wp(x = e, 1) = le/x]
wp(Cy 5 G, 9) = wp(Gy, wp(G, ¢))
wp(if b then C else G, 1) = (=bV 1) A (bV ¢2)

where
¢1 = wp(Cy, 1)
¢2 - Wp(C27 1/})

» wp(while b do {0} Co,v) =6

vV vV v v

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

» add one implication:

¢ — wp(C,)

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,

» add one implication:

¢ — wp(C,)

» for command C of form: while b do {0} Cp ,

verification condition for {¢} C {¢}

» for command C of form: skip, update, seq, cond,
» add one implication:

¢ — wp(C,)

» for command C of form: while b do {0} Cp ,
» add two implications:

¢ —0
ON—b—

and add verification condition for Hoare triple {6 A b} Co {6}

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

> let [be a set of assertions
(e.g., axioms for bounded integer arithmetic,
axioms for factorial function, ...)

Adequacy of Verification Condition

> let ® be the verification condition for {¢} C {¢}

> let [be a set of assertions
(e.g., axioms for bounded integer arithmetic,
axioms for factorial function, ...)

M=o iff TF{¢} C{v}

