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Abstract—Accurate and robust localization is essential for
the successful navigation of autonomous mobile robots. The
majority of existing localization approaches, however, is based
on the assumption that the environment is static which does
not hold for most practical application domains. In this paper,
we present a localization framework that can robustly track
a robot’s pose even in non-static environments. Our approach
keeps track of the observations caused by unexpected objects
in the environment using temporary local maps. It relies both
on these temporary local maps and on a reference map of the
environment for estimating the pose of the robot. Experimental
results demonstrate that by exploiting the observations caused
by unexpected objects our approach outperforms standard
localization methods for static environments.

I. INTRODUCTION

Robot localization consists of estimating the pose of the

robot relative to a given map of the environment. The major-

ity of existing approaches, however, assume the environment

to be static. A common technique for dealing with non-static

environments is to simply ignore measurements that are not

explained by the reference map. This assumes that objects

are either static and represented in the map or dynamic and

should be ignored for localization. Whereas this technique

has been demonstrated to be robust in highly dynamic

environments, it ignores valuable localization information

when the changes in the environment occur slowly.

In this paper, we present a localization framework that

exploits the measurements caused by semi-static objects to

build local maps that temporarily extend the static map of

the environment. Using these temporary maps allows the

robot to reliably estimate its pose also in regions that are

subject to persistent changes. The motivation behind our

approach is that many objects change their locations with

a relatively low frequency and therefore provide important

localization information. We will refer to these objects as

being semi-static. For example, consider a parking lot as

the one depicted in Figure 1. In such an environment there

are only a few static objects. Additionally, the parked cars

occlude these objects most of the time. As a result almost no

features remain that can be used for localization by standard

approaches. The parked cars, however, provide on their own

important features for localization. Taking advantage of the

measurements caused by semi-static objects can improve the

localization capabilities of a mobile robot.

In many practical mobile robot applications, a reference

map representing the static parts of the environment is avail-

able beforehand. However, most environments are not static
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Fig. 1. In large open spaces like a parking lot, the semi-static objects
(parked cars) provide an abundant source of important features for localiza-
tion. The static objects (walls) are not only few but are also occluded by
the non-static objects.

and mobile robots must be able to deal with changes in the

environment. Our approach is an extension of the standard

particle filter localization approach for static environments.

We assume that a reference map representing the static

objects in the environment is given. When the observations

of the robot are consistent with this map, our approach

corresponds exactly to the standard particle filter approach.

However, we also use temporary maps to keep track of

the inconsistent observations caused by semi-static objects.

Whenever the robot enters an area for which a temporary

map already exists we try to use this map to improve the

localization. Taking advantage of the measurements caused

by semi-static objects is particularly important in large open

spaces like the parking lot in Figure 1 or warehouses, where

the static parts of the environment are few and usually

occluded, but many semi-static objects provide valuable

localization information.

The contribution of this paper is a localization approach

capable of dealing with semi-static environments. We provide

a probabilistic formulation of the localization problem where

the semi-static aspects of the environment are explicitly

modeled. Our algorithm keeps track of the observations

caused by the semi-static objects in the environment in the

form of local maps that temporarily extend the static map

of the environment. At its core, our localization framework

relies on a particle filter for estimating the pose of the

robot using the extended static map. Experimental results

demonstrate that by exploiting the observations caused by

semi-static objects our approach is capable of robustly and

accurately estimating the pose of the robot where standard

approaches fail.



II. RELATED WORK

In the past, several authors have studied the problem of

mobile robot localization in non-static environments. Fox et

al. [1], for example, use an entropy gain filter to identify

the measurements caused by dynamic objects. Burgard et

al. [2] additionally use a distance filter which selects indi-

vidual measurements based on the difference between their

measured and their expected distance. Montemerlo et al. [3]

propose a method for tracking people while simultaneously

localizing the robot which increases the robustness of the

robot pose estimation.

The problem of dealing with dynamic objects has also

been investigated in the field of simultaneous localization

and mapping (SLAM). Wang and Thorpe [4] employ a

feature-based heuristic to identify dynamic objects in range

measurements and use the filtered result for localizing the

robot and building a map at the same time. Hähnel et al. [5]

use a probabilistic method for tracking people and filter

out the corresponding measurements to improve the map

building process. Although these filtering approaches have

proven to be robust in highly dynamic environments, they

discard valuable localization information when the changes

in the environment occur with a relatively low frequency.

Stachniss and Burgard [6] approach this problem by

estimating typical configurations of dynamic areas in the

environment. They show that the integration of this infor-

mation into a particle filter framework improves the robot

pose estimation. Anguelov et al. [7] deal with non-stationary

objects representing them using learned geometric models.

They apply a hierarchical EM algorithm based on occupancy

grid mapping to learn a shape model of the objects and

ultimately use this information to correct the mapping pro-

cess. Andrade-Cetto and Sanfeliu [8] describe an approach

where landmarks are introduced and removed depending on

how often they had been observed. Biber and Duckett [9]

propose a spatio-temporal map where the environment is

represented at multiple time-scales simultaneously. In con-

trast to mapping approaches, we do not aim at generating

a consistent representation of the environment. The local

maps constructed by our approach are only temporary and

are discarded as soon as inconsistencies are detected.

The idea of using sets of local maps as representation of

the environment has been proposed by many authors in the

past. Estrada et al. [10], for example, build a graph of local

stochastically independent maps and correct the position of

the local maps whenever the robot enters an area already

visited. Williams et al. [11] create a local submap of the

features around the robot and fuse the local maps regularly

with a global map. Gutmann and Konolige [12] construct

locally consistent maps and use them to determine when the

robot is entering an area already visited in the global map. All

these approaches assume the environment to be static and use

the gathered information for constructing globally consistent

maps. In contrast, our goal is to improve the localization

capabilities of the robot by constructing local maps that

temporarily extend the reference map of the environment.

Fig. 2. Graphical model of the mobile robot localization process in semi-
static environments. The observations zt at time step t are explained by
both the static map m and the corresponding semi-static map dt.

III. LOCALIZATION IN SEMI-STATIC

ENVIRONMENTS

Mobile robot localization consists of estimating the proba-

bility density p(xt | z1:t, u1:t,m) of the pose xt of the robot

in a known map m given a sequence of observations of

the environment z1:t = {z1, . . . , zt} and odometry measure-

ments u1:t = {u1, . . . , ut}. Most existing solutions to the

localization problem assume that the environment is static.

In our work, we classify the objects in the environment

according to their dynamics into three different classes:

• Static objects: like buildings, that do not change their

location.

• Semi-static objects: like parked cars, that change their

locations with a relatively low frequency. In particular,

we assume that these objects do not change their

location while the robot is observing them.

• Dynamic objects: like moving people, that frequently

change their location. Unlike semi-static objects, dy-

namic objects do change their location while being

observed by the robot.

We assume that dynamic objects are detected and filtered

out. Accordingly, the map m represents the static objects

in the environment whereas the map dt represents the

semi-static objects at time t. Figure 2 depicts the dynamic

Bayesian network describing the localization process in a

semi-static environment. The main difference to standard

localization approaches in static environments is that we

explicitly model the fact that the observation zt at time step

t is explained by both, the static map m and the semi-static

map dt. Each observation zt is divided into two independent

parts: zdt caused by semi-static objects and zmt caused by the

static objects. Additionally, since semi-static objects change

their location with a relatively low frequency, observations

obtained at different time steps can be explained by a single

semi-static map as illustrated in Figure 3. In principle, the

semi-static map dt at time t depends on the semi-static map

dt−1 at the previous point in time. In our work, however, we

do not reason about the temporal dependency between semi-

static maps. For simplicity we assume that a semi-static map

either consistently explains the measurements zdt at time t

or it is not valid anymore and needs to be re-estimated. This

corresponds to a uniform distribution about the evolution of

the semi-static maps.



Fig. 3. Since semi-static objects change their locations with a relatively
low frequency, one semi-static map di can explain observations at different
time steps.

According to our formulation, robot localization in semi-

static environments requires to jointly estimate the probabil-

ity distribution p(xt, dt | z1:t, u1:t,m) over robot locations

and semi-static maps. To this end one could use one of

the many SLAM algorithms available and initialize it with

the known static map. However, the majority of SLAM

approaches is based on the assumption that the environment

is static and the presence of non-static objects can lead to

serious errors in the resulting maps. Instead of estimating the

full distribution over the potential semi-static maps dt, we

rely on a local maximum likelihood estimate d∗t considering

the trajectory of the robot while it moves in non-static areas.

In the following section we present our approach for robot

localization in semi-static environments in more detail.

IV. TEMPORARY MAPS

The key idea of our approach is to use the measurements

caused by semi-static objects to improve the localization

capabilities of the robot. With these measurements, we build

local semi-static maps that temporarily extend the static map

of the environment. Due to the temporal nature of these maps

we refer to them throughout this paper both as semi-static

or temporary maps.

A semi-static map represents the semi-static objects in

the environment as observed by the robot while navigating

through it. As illustrated in Figure 3, a semi-static map

di is associated to a sequence of measurements zn:m with

their corresponding poses xn:m. Semi-static maps are created

as the robot navigates through the environment using a

maximum-likelihood approach.

When the observations obtained by the robot are consistent

with the static map of the environment, we use this map as

reference to estimate the pose of the robot. However, when

the observations are inconsistent, we select the local map

closest to the current pose of the robot. If a map is found,

we try to use it as reference for localization instead of the

static map. In the remainder of this section we describe the

different components of our localization framework.

A. Particle Filter Localization

For estimating the pose of the robot our localization frame-

work relies on a particle filter that uses the extended static

map of the environment. In the context of robot localization,

particle filters are used to estimate the posterior distribution

p(xt | z1:t, u1:t,m) of the robot’s pose xt at time t condi-

tioned on the observations z1:t, odometry measurements u1:t,

and map of the environment m. The key idea of particle

filters is to represent the posterior by a set of weighted

samples or particles, where each particle corresponds to a

potential pose of the robot. The particle filter algorithm

computes the particle set at time t recursively from the

particle set at time t−1 using the most recent observation zt
and odometry measurement ut. The resulting set of particles

represents a sample-based approximation of the continuous

posterior distribution. To extract a continuous distribution out

of the particle set, we use a Gaussian approximation of the

weighted particle set.

In the sampling step of the algorithm we use a probabilistic

model p(xt | xt−1, ut) of the robot’s motion as proposal

distribution. This motion model describes a posterior density

over possible poses xt given the previous pose xt−1 and

most recent odometry measurement ut. The weights of the

particles are computed as wt = p(zt | xt,m) · wt−1. The first

term p(zt | xt,m) corresponds to the observation model that

represents the likelihood of the most recent observation zt
given the map of the environment m and the pose xt. The

second term wt−1 corresponds to the weight of the particle

at the previous time step.

B. Perceptual Model

We assume that the observations are obtained from a range

scanner and that each observation zt consists of a set of

range measurements. To evaluate the likelihood p(zt | xt,m)
of an observation zt given the pose xt of the robot and a

reference map m, we use the likelihood fields model [13].

In this model, the individual range measurements of the

observation zt are assumed to be independent of each other

and the likelihood of each one is computed based on the

distance between the endpoint of the range measurement and

its closest obstacle in the map m.

In our current implementation, we use this distance as a

heuristic to decide whether a measurement is explained by

the map m or not. Concretely, if the distance to the closest

object in the map is larger than a given threshold, we assume

that the measurement is inconsistent with the map and

consider it an outlier. The outlier ratio for a given observation

zt corresponds to the fraction of range measurements that do

not correspond to their expected values according to the map.

Throughout this paper we use the weighted average outlier

ratio of the particle set given a map as criterion of how well

a given observation is explained by the map.

C. Constructing Temporary Maps

A temporary or semi-static map consists of a sequence

of measurements zn:m with their associated poses xn:m that

implicitly represent a part of the environment. To construct

such a map we incrementally perform scan-matching on

consecutive observations. The idea is to compute, for each

new observation, the pose that best aligns the observation

with respect to a reference map. This map is then extended

by adding the aligned observation together with its corre-

sponding pose.

The concrete scan matching technique used in our work is

similar to the correlative scan matching approach proposed

by Olson [14]. The idea is to evaluate the observation like-

lihood p(zt | xt,m) using a previous scan zt−1 as reference

map m over a discrete three-dimensional volume of potential



poses xt. The maximum-likelihood pose corresponds to the

best alignment between the two scans. Whereas in Olson’s

approach only a single scan zt−1 is used as reference, we

use a history of previously aligned scans zt−k:t−1. In our

experiments, we found that using a history of scans instead

of a single one increases the accuracy and robustness of the

scan matching technique.

One drawback of incrementally constructing maps using

scan-matching is that the pose estimates are never corrected.

To overcome this problem, we adjust the poses of the

temporary map whenever the robot enters a known area in

the static map or an area for which a temporary map already

exists. This problem corresponds to an instance of the graph-

based SLAM [15] problem, where the poses of the robot

correspond to nodes in a graph. An edge between two nodes

represents the relative movement between the corresponding

poses as estimated by the scan matcher. In addition to

these spatial constraints between consecutive poses we also

consider the global constraint that results from the robot

entering a known area. This global constraint corresponds

to the relative movement of the robot between the first and

last pose in the semi-static map, being the last pose the point

where the robot reentered a known area.

To efficiently compute the maximum-likelihood semi-

static map we use the approach described by Grisetti et

al. [15]. Note that the optimization is only performed when

reentering a know area. Furthermore, in contrast to the pure

SLAM problem, we do not adjust the nodes in the graph that

correspond to the robot being in a known area in the static

map of the environment.

D. Extending the Static Map

In our work, we assume that a static map of the en-

vironment is given. When the observations of the robot

are inconsistent with the static map, we select the semi-

static map closest to the current pose of the robot and try

to use it as reference for localization instead of the static

map. Note that our approach is an extension of the standard

particle filter localization for static environments. Whenever

the observations of the robot are consistent with the static

map of the environment, our approach corresponds exactly

to the standard particle filter approach.

Semi-static maps are created whenever the following two

conditions hold. First, the observations of the robot are

inconsistent with the static map of the environment. And

second, there is no other semi-static map close to the current

pose of the robot that explains the observations and can

be used as reference for localization instead of the static

map. Whenever these two conditions hold over multiple

consecutive time steps a new semi-static map is created

as described in the previous section. To determine if an

observation is inconsistent with a map or not we use the

average outlier ratio of the particle set as described in

Section IV-B.

We assume that a semi-static map either consistently

explains the observations at a given time or it is not valid

anymore. Accordingly, semi-static maps are discarded if the

average outlier ratio of the particle set is too high over

multiple consecutive time steps. Ideally, semi-static maps

should only be eliminated if the environment has changed

since the moment of its creation. To reduce the problem of

incorrectly eliminating a map, the uncertainty in the pose

estimate is also taken into account. Maps are discarded if

the uncertainty of the particle set is below a given threshold.

E. Localization Using Temporary Maps

Whenever the static-map of the environment does not

explain the observations of the robot, we search for a semi-

static map near the current pose of the robot to use as

reference for localization instead of the static map.

To choose the nearest semi-static map, we use the Maha-

lanobis distance as proximity measure between the pose of

the robot and the poses in the local maps. In this way we

can take the uncertainty in the pose estimate into account

when selecting an adequate map. We use a kd-tree to store

the poses of the local maps to make the search efficient.

Using temporary maps for localization, the weighs of

the particles are computed as wt = p(zt | xt,m, dt) · wt−1,

where dt corresponds to the nearest semi-static map. The

observation likelihood p(zt | xt,m, dt) is computed as

p(zt | xt,m, dt) =

p(zt | xt,m)I(zt,m) · p(zt | xt, dt)
I(zt,dt) . (1)

In the equation above, I(zt,m
′) is an indicator function

defined as

I(zt,m
′) =

{

1 if e(zt,m
′) < ǫ

0 otherwise,
(2)

where e(zt,m
′) is the average outlier ratio for observation

zt and map m′, and ǫ represents the threshold at which

the observation zt is considered inconsistent with the map

m′. Semi-static maps are only created in areas where the

observations are inconsistent with the static map of the

environment. Thus, (1) states that the weights of the particles

are computed according to either the static map of the

environment m or the closest semi-static map dt, provided

that dt is consistent with zt. Note that when no map is

consistent with the observations, all particles will be assigned

the same weight, and the particle set will evolve exclusively

according to the motion model of the robot.

Since our approach is based on a particle filter, the

complexity of the algorithm depends mostly on the number

of particles used. The construction, including optimization,

of a semi-static map is approximately lineal in the number

of poses in the map. Adding semi-static maps to the kd-tree

and searching for the closest semi-static map is logarithmic

in the number of poses of all semi-static maps. However,

constructing and adding semi-static maps to the kd-tree is

not a frequent operation and searching for the closest semi-

static maps takes place only when the observations of the

robot are inconsistent with the static map of the environment.

More importantly, none of these operations depend on the

number of particles. As a result, the overall complexity of

the algorithm depends linearly on the number of particles.



Fig. 4. Trajectory of the robot obtained during the experiments with our
localization approach. The dark colored structures at the bottom correspond
to the static parts of the environment used as reference map. Note that by
limiting the line-of-sight of the robot to 20 meters the reference map could
only be observed sporadically.

To summarize our approach, we assume that a static map

of the environment is given. When the observations of the

robot are inconsistent with this map we try to find a semi-

static map to use as reference for localization instead. The

semi-static map is selected based on the distance to the

current pose of the robot. If a map is found, we try to localize

the robot using the temporary map instead of the reference

map of the environment. Temporary maps are eliminated if

they are inconsistent with the robot’s observation.

V. EXPERIMENTAL EVALUATION

We implemented and tested our approach using real data

gathered with a MobileRobots Powerbot equipped with a

SICK LMS laser range finder. The experiments show that

by exploiting the observations caused by semi-static objects

our method can robustly and accurately estimate the pose of

the robot where standard approaches fail.

A. Localization in Large Open Spaces

To evaluate the robustness and accuracy of our approach

we steered the robot through a parking lot and created a

map containing only the static elements of the environment.

Although there exists approaches for generating static maps

in dynamic environments, this was not the aim of our work so

we manually removed the dynamic elements. Furthermore,

we removed some areas of the static map to better evaluate

the behavior of our approach. Figure 4 shows the part of the

environment that was used as static map for this experiment.

We evaluated our approach in the task of position tracking

and did not consider the problem of global localization. Since

our framework is an extension of a particle filter, global local-

ization is possible as long as enough features of the reference

map are observed. Figure 4 plots the average trajectory of

the robot obtained using our localization approach over 10

repetitions of the experiment. In every repetition, 30 particles

where used and the maximum range of the laser beams was

set to 20 meters. In this way, we reduced the number of

observations caused by the reference map. As pose estimate,
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Fig. 6. Average localization error obtained when using outdated semi-static
maps compared against the error when no maps were given beforehand.

we used the weighted mean of the particle set. The ground

truth map, also shown in Figure 4, was computed using a

static SLAM approach [15] considering the full 80 meter

depth range of the laser scanner. Note that the reference

map was only observed during short time intervals at the

beginning and the end of the trajectory. Despite of this, the

pose of the robot could be accurately estimated during the

whole experiment.

To quantitatively measure the accuracy of our approach,

Figure 5 plots the average error and standard deviation

between the estimated poses and the ground truth. We also

compared our results against a standard particle filter using

the raw odometry of the robot in one case and using an

improved odometry based on scan-matching in the other. As

can be seen from the figure, our approach only produces a

small and relatively constant error along the entire trajectory.

The standard particle filter, in contrast, results in a substan-

tially larger error, even when the robot utilized the improved

odometry. Thus, the utilization of observations caused by

semi-static objects substantially increases the localization

capabilities of the robot.

B. Localization in Non-Static Environments

The goal of this second experiment is to evaluate how

our approach handles large changes in the environment.

We collected data on two different days on our parking

lot so that the configuration of the parked cars would be

considerably different. We ran our algorithm on the data of

the first day and used the obtained temporary maps as the

initial extended map for the data of the second day. The

objective of the experiment was to analyze the effect of

inconsistent temporary maps in the accuracy and robustness

of the localization.

Figure 6 plots the average error and standard deviation

of our approach when using the outdated semi-static maps

compared against the error when no semi-static maps were
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Fig. 7. Average error and standard deviation of the estimated pose obtained
using our approach and two static SLAM techniques: Rao-Blackwellized
Particle Filter (RBPF) and graph-based SLAM.

given beforehand. As can be seen, there are no significant

differences between both errors. This shows that our ap-

proach can correctly identify when a temporary map is not

valid anymore and discards it accordingly. As explained in

Section IV-D, a temporary map is considered invalid if the

average outlier ratio of the particle set for that map is above

a given threshold. We determined this value empirically and

set it to 0.8 in all our experiments. On the one hand, using

smaller values sometimes caused maps to be deleted even

when the environment had not changed. On the other hand,

using larger values made the algorithm overconfident in the

available maps which sometimes lead to less accurate results.

This explains the slightly higher errors obtained when using

the outdated semi-static maps in the first half of the trajectory

shown in Figure 6.

C. Standard SLAM in Non-Static Environments

The goal of this experiment is to compare standard SLAM

approaches with our approach. We created several artificial

maps representing a parking lot in different configurations.

Using a simulation environment we switched between the

different maps while the robot moved to create the ef-

fect of a semi-static environment. For the comparison we

considered two state-of-the-art static SLAM techniques: a

Rao-Blackwellized Particle Filter (RBPF) [16] and a graph-

based SLAM approach [15]. To measure the accuracy of the

approaches we utilized the error metric described in [17]. The

displacements from the initial pose where used to emphasize

the overall geometry of the environment in the metric.

Figure 7 compares the translational error obtained using

our approach and the static SLAM techniques. As the number

of observations caused by non-static objects increases in

the map, it becomes more difficult for the static SLAM

approaches to distinguish between inconsistent observations

caused by changes in the environment, sensor noise, and

localization errors. In particular because changes in the envi-

ronment are not explicitly considered. This is reflected by the

growth in the error as the robot navigates the environment.

By relying on an unmodifiable static map and discarding the

semi-static maps as they become inconsistent, our approach

is robust against changes in the environment as can be seen

in the figure by the almost constant error.

VI. CONCLUSIONS

In this paper, we presented a localization framework that

exploits the measurements caused by semi-static objects

to improve the localization capabilities of a mobile robot

in dynamic environments. Our approach constructs local

maps using the measurements caused by semi-static objects.

These maps temporarily extend the reference map of the

environment and are used as fall-back map whenever the

observations of the robot are inconsistent with the reference

map. Our approach is an extension to standard particle filter

localization that only employs a map of the static aspects

of the environment to estimate the pose of the robot. We

implemented our approach and tested it on data gathered

with a real robot. Experimental results demonstrate that by

exploiting the observations caused by semi-static objects our

approach is capable of robustly and accurately estimating the

pose of the robot even in situations in which state-of-the-art

approaches fail.
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