Nonparametric Bayesian Models for Unsupervised Scene Analysis and Reconstruction

Dominik Joho, Gian Diego Tipaldi, Nikolas Engelhard, Cyrill Stachniss, Wolfram Burgard
Department of Computer Science, University of Freiburg, Germany
{joho, tipaldi, engelhar, stachnis, burgard}@informatik.uni-freiburg.de

Abstract—Robots operating in domestic environments need to deal with a variety of different objects. Often, these objects are neither placed randomly, nor independently of each other. For example, objects on a breakfast table such as plates, knives, or bowls typically occur in recurrent configurations. In this paper, we propose a novel hierarchical generative model to reason about latent object constellations in a scene. The proposed model is a combination of a Dirichlet process and beta processes, which allows for a probabilistic treatment of the unknown dimensionality of the parameter space. We show how the model can be employed to address a set of different tasks in scene understanding including unsupervised scene segmentation and completion of partially specified scenes. We describe how to sample from the posterior distribution of the model using Markov chain Monte Carlo (MCMC) techniques and present an experimental evaluation with simulated as well as real-world data obtained with a Kinect camera.

I. INTRODUCTION

Imagine a person laying a breakfast table and the person gets interrupted so that she cannot continue with the breakfast preparation. A service robot such as the one depicted in Fig. 1 should be able to proceed laying the table without receiving specific instructions. It faces a series of questions: how to infer the total number of covers, how to infer which objects are missing on the table, and how should the missing parts be arranged? For this, the robot should not require any user-specific pre-programmed model but should ground its decision based on the breakfast tables it has seen in the past.

In this paper, we address the problem of scene understanding given a set of unlabeled examples and generating a plausible configuration from a partially specified scene. The key contribution of this paper is the definition of a novel hierarchical nonparametric Bayesian model to represent the scene structure in terms of object groups and their spatial configuration. We show how to infer the scene structure in an unsupervised fashion by using Markov chain Monte Carlo (MCMC) techniques to sample from the posterior distribution of the latent scene structure given the observed objects.

In our model, each scene contains an unknown number of latent object constellations or meta-object instances. In the breakfast table example, a place cover can be seen as a latent meta-object instance of a certain type that, for example, consists of the objects plate, knife, and cup. An instance of a different type might consist of a cereal bowl and a spoon. The meta-object instances are sampled from a distribution over object constellations (Fig. 2). Thus, not all instances are the same, they differ in the sense that some objects may be missing and that the objects may not be arranged in the same way.

When specifying a generative model for our problem, we have the difficulty that the dimensionality of the model is part of the learning problem. This means, that besides learning the parameters of the model, like the pose of a meta-object, we additionally need to infer the number of involved meta-objects, meta-object parts, etc. The standard solution would be to follow the model selection approaches, for example, learning several models and then choosing the best one. Such a comparison is typically done by trading off the data likelihood with the model complexity as, for example, done for the Bayesian information criterion (BIC). The problem with this approach is the huge number of possible models, which renders this approach intractable in our case.

To avoid this complexity, we follow another approach, motivated by recent developments in the field of hierarchical nonparametric Bayesian models based on the Dirichlet process and the beta process. These models are able to adjust their complexity according to the given data, thereby sidestepping the need to select among several finite-dimensional model alternatives. Based on a prior over scenes, which is updated by observed training scenes, the model can be used for parsing new scenes or completing partially specified scenes by sampling the missing objects.

Whereas in this paper, we consider the problem of learning the object constellations on a breakfast table as depicted in Fig. 1, our model is general and not restricted to this scenario.
for learning the pairwise structure of the underlying graphical model. Triebel et al. [19] presented an unsupervised approach to segment 3D range scan data and to discover objects by the frequency of the appearance of their parts. The data is first segmented using graph-based clustering, then each segment is treated as a potential object part. The authors used CRFs to represent both the part graph to model the interdependence of parts with object labels, and a scene graph to smooth the object labels. Spinello et al. [14] proposed an unsupervised detection technique based on a voting scheme of image descriptors. They introduced the concept of latticelets: a minimal set of pairwise relations that can generalize the patterns connectivity. Conditional random fields are then used to couple low level detections with high level scene description. Jiang et al. [8] used an undirected graphical model to infer the best placement for multiple objects in a scene. Their model considers several features of object configurations, such as stability, stacking, and semantic preferences.

A different approach is the one of Fidler and Leonardis [5]. They construct a hierarchical representation of visual input using a bottom-up strategy. They learn the statistically most significant compositions of simple features with respect to more complex higher level ones. Parts are learned sequentially, layer after layer. Separate classification and grouping technique are used for the bottom and top layers to account for the numerical difference (sensor data) and semantical ones (object category).

The novelty of the approach presented in this paper lies in the combination of a Dirichlet process and beta-Bernoulli processes which provides us with a prior for sampling or completing entire scenes.

III. GENERATIVE SCENE MODEL

In this section, we describe the proposed generative scene model. We assume that the reader is familiar with the basics of nonparametric Bayesian models [6], especially with the Chinese restaurant process (CRP) and the Dirichlet process (DP) [16], the (two-parameter) Indian buffet process (IBP) and the beta process (BP) [7, 18], and the concepts of hierarchical [17] and nested [12] processes in this context.

In the following, we consider a scene as a collection of observable objects represented as labeled points in the 2D plane. The 2D assumption is due to our motivation to model table scenes. However, the model is not specifically geared towards 2D data and could in principle also be applied to 3D data. Basically, we assume that each scene contains an unknown number of latent object constellations (place covers). An object constellation is called a meta-object instance (or simply meta-object) and corresponds to a sample from a meta-object type, which is a distribution over object constellations and is represented as a part-based model with infinitely many parts. As illustrated in Fig. 2, each part has a binary activation probability, a Gaussian distribution over the relative object position, and a multinomial distribution over the object type (knife, fork, etc.). To sample from a meta-object type, one first samples the activation of each part. For each activated part,
one then samples the relative position and the object type to be generated at this location. Each activated part generates exactly one object per meta-object instance. Thus, the objects of a scene can be grouped into clusters. Each cluster corresponds to a meta-object instance and the objects of a cluster can be associated to the parts of the corresponding meta-object type.

A. Description of the Generative Process

Following the example given in the introduction, imagine that our robot’s goal is to set a table for a typical family breakfast. At the beginning, it enters a room with an empty breakfast table and an infinite number of side tables, each holding a prototypical cover. It estimates the area A of the breakfast table surface and boldly decides that $n \sim \text{Poisson}(A\lambda)$ covers are just right. The robot chooses one of the side tables and finds a note with the address of a Chinese restaurant where it can get the cover. Arriving there, it sees again infinitely many tables each corresponding to a particular cover type and each displaying a count of how often someone took a cover from this table. It is fine with just about any cover type and each displaying a count of how often someone took a cover from this table. It is fine with just about any cover type and each displaying a count of how often someone took a cover from this table. It is fine with just about any cover type and each displaying a count of how often someone took a cover from this table. It is fine with just about any cover type and each displaying a count of how often someone took a cover from this table.

In this restaurant, it is being told that the cover needs to be assembled by choosing the parts that make up this cover. The robot randomly selects the parts based on their popularity and even considers to use a few parts no one has ever used before. For each chosen part its relative position is sampled from the part’s Gaussian distribution and then the robot samples the object from the part’s multinomial distribution over types (plate, knife, fork, etc.). Having assembled the cover this way, the robot returns to the breakfast table and puts it randomly on it. The process is then repeated for the remaining $n - 1$ covers. See Fig. 3 for an overview of the model structure.

More formally, we have a hierarchical model with a high-level Dirichlet process DP_t, a low-level beta process BP_c and a further independent beta process BP_p. First, we draw G_t from the high-level DP_t

$$G_t \sim \text{DP}_t(\alpha_t, \text{BP}_p(c_p, \alpha_p, \text{Dir} \times \mathcal{N}(\mathcal{W}))),$$ \hspace{1cm} (1)

where the base distribution of DP_t is a beta process BP_p modeling the parts’ parameters. This is done only once and all scenes to be generated will make use of the same draw G_t. This draw describes the distribution over all possible meta-object types (cover types) and corresponds to the Chinese restaurant mentioned above. The base distribution of the beta process is the prior distribution over the parts parameters. The parameters are a 2D Gaussian distribution over the relative location and a multinomial over the observable object types. The parameters are sampled independently and we use their conjugate priors in the base distribution, i.e., a (symmetric) Dirichlet distribution Dir for the multinomial and the normal-Wishart distribution $\mathcal{N}(\mathcal{W})$ for the 2D Gaussian. The mass parameter c_p of BP_p is our prior over the number of activated parts of a single meta-object instance and the concentration parameter c_p influences the total number of instantiated parts across all instances of the same type. Likewise, the parameter α_t influences the expected number of meta-object types. Each scene s has its own meta-object IBP and the meta-

![Fig. 3. Basic structure of our model: The Indian buffet processes (IBP) on top are nested within the tables (represented as circles) of the Chinese restaurant process (CRP) below them. The blocks within the IBP frames represent the relevant part of the IBP matrix (see Fig. 4). Clusters in the scenes are meta-object instances and objects (colored/gray points) of the clusters need to be associated to entries in the IBPs shown on top. This is explicitly shown for one cluster in the first scene. For visibility reasons, the rest of the associations are drawn as a single thick line. At the lowest level, each scene has a meta-object IBP (shown on the left) and a noise IBP (on the right) from which the meta-object instances and the noise objects of a scene are drawn.](image1)

![Fig. 4. A more detailed view on a part IBP representing a meta-object type. This would correspond to one of the IBPs at the very top in Fig. 3. The rows represent customers and the columns represent dishes (parts). The customers of this IBP are the meta-object instances associated to this meta-object type in any of the scenes. The objects of the instances must be associated to one of the parts. They thereby update the posterior predictive distribution (illustrated at the bottom) over the objects of a new customer. Remember, that the actual part parameters are integrated out due to the usage of conjugate priors.](image2)
object instances are determined by a single draw from the corresponding beta-Bernoulli process as follows:
\[G_{e}^{(s)} \sim BP_e(1, |A_s| \alpha_e, G_{t} \times U(\mathcal{A}_{s} \times [-\pi, \pi])) \]
(2)
\[\{G_{t}, T_{j}\}_{j} \sim BeP(G_{e}^{(s)}) \]
(3)
\[\{\mu_{k}, \Sigma_{k}, \gamma_{k}\}_{k} \sim BeP(G_{t}) \] for each \(j \)
(4)
\[\{x_{i}, \omega_{i}\}_{i} \sim BeP(G_{e}^{(s)}) \] for each \(k \)
(5)
In Eq. (2), the concentration parameter is irrelevant and arbitrarily set to one. The mass parameter \(|A_s| \alpha_e\) is the expected number of meta-object instances in a scene. The base distribution of \(BP_e \) samples the parameters of a instance \(j \): its type \(t_j \) and its pose \(T_j \). The type \(t_j \) is drawn from the distribution over meta-object types \(G_t \) from Eq. (1). The pose \(T_j \) is drawn from a uniform distribution \(U \) over the pose space \(\mathcal{A}_{s} \times [-\pi, \pi] \) where \(\mathcal{A}_{s} \) is the table area. Each atom selected by the Bernoulli process in Eq. (3) corresponds to a meta-object instance and this selection process corresponds to the side table metaphor mentioned above. The meta-object type \(t_j \) basically references a draw \(G_t \) from the nested beta process in Eq. (1) which models the parts of a meta-object type. Thus, in Eq. (4) we need another draw from a Bernoulli process to sample the activated parts for this instance, which yields the Gaussians \((\mu_{k}, \Sigma_{k}) \) and the multinomials \((\gamma_{k}) \) for each active part \(k \). Finally, in Eq. (5) we draw the actual observable data from the data distribution as realizations from the multinomials and the (transformed) Gaussians, which yields an object \(z = \{x_{i}, \omega_{i}\} \) on the table with location \(x \) and type \(\omega \) for each activated part.

Each scene has an additional independent beta process \(BP_e \)
\[G^{(s)}_{e} \sim BP_e(1, \alpha_e, M \times U(\mathcal{A}_{s})) \]
(6)
\[\{x_{i}, \omega_{i}\}_{i} \sim BeP(G^{(s)}_{e}) \]
(7)
that directly samples objects (instead of meta-objects) at random locations in the scene. Here, \(M \) is a multinomial over the observable object types and \(U(\mathcal{A}_{s}) \) is the uniform distribution over the table area \(\mathcal{A}_{s} \). This beta-Bernoulli process will mainly serve as a “noise model” during MCMC inference to account for yet unexplained objects in the scene. Accordingly, we set the parameter \(\alpha_e \) to a rather low value to penalize scenes with many unexplained objects. Figs. 3 and 4 illustrate the overall structure of the model.

B. Posterior Inference in the Model

In this section, we describe how to sample from the posterior distribution over the latent variables \(\{C, a\} \) given the observations \(z \). We use the following notation. The observations are the objects of all scenes and a single object \(z_i = \{x_i, \omega_i\} \) has a 2D location \(x_i \) on the table and a discrete object type \(\omega_i \). A meta-object instance \(j \) has parameters \(C_j = \{T_j, t_j, d_j\} \), where \(T_j \) denotes the pose and \(d_j \) denotes the meta-object type, which is an index to a table in the type CRP, and \(d_j \) denotes part activations and associations to the observable objects. If \(d_{j,k} = 0 \) then part \(k \) of meta-object instance \(j \) is inactive, where \(k \) is an index to a dish in the corresponding part IBP (which is nested in the CRP table \(t_j \)). Otherwise, the part is active and \(d_{j,k} \neq 0 \) is a reference to the associated observable object, i.e., \(d_{j,k} = i \) if it generated the object \(z_i \). Next, for each scene we have the associations \(a \) to the noise IBP, i.e., the list of objects currently not associated to any meta-object instance. For ease of notation, we will use index functions \([\cdot]\) in an intuitive way, for example, \(t_{-j} \) denotes all type assignments except the type assignment \(t_j \) of meta-object \(j \) and \(T_{[t]} \) denotes all poses of meta-objects that have the same type \(t_j \) as meta-object \(j \), and \(z_{[d]} \) are all observations referenced by the associations \(d \), etc.

We employ Metropolis-Hastings (MH) moves to sample from the posterior \(\pi \), which allows for big steps in the state space by updating several strongly correlated variables at a time. In the starting state of the Markov chain, all objects are assigned to the noise IBP of their respective scene and thus are interpreted as yet unexplained objects. We sample for a fixed yet sufficiently high number of iterations to be sure that the Markov chain converged. We use several types of MH moves, which we will explain in the following after describing the joint likelihood.

Joint Likelihood: \(p(C, a, z) = p(T, t, d, a, z) \). The joint likelihood is
\[p(C, a, z) = \left(\prod_{s=1}^{S} p(n_{s,e}) p(n_{s,m}) \right) \left(\prod_{t=1}^{n_{t}} p(d_{[t]} | t) \right) \]
\[p(T) \left(\prod_{l=1}^{n_{l}} \prod_{k=1}^{K_{l}} p(z_{[s],l,k]} | T_{[t]}, d_{[t,k]}, t) \right). \]
(8)

Here, \(n_{s,m} \) is the number of meta-object instances and \(n_{s,e} \) is the number of noise objects in scene \(s \). Each dish parameter of the noise IBP directly corresponds to the parameters \(z_i = \{x_i, \omega_i\} \) of the associated noise object, as we assumed that there is no data distribution associated with these dishes. The base distribution for the dish parameters consists of independent and uniform priors over the table area and the object types, and so each dish parameter has the likelihood \((n_{\omega} | A_s|)^{-1} \), where \(n_{\omega} \) is the number of observable object types and \(|A_s| \) is the area of the table in scene \(s \). Thus, the probability of the objects \(z_{[s],l,k} \) associated to a scene’s noise IBP only depends on the number of noise objects and not on the particular type or position of these objects. However, it would be straightforward to use a non-uniform base distribution. Denoting the Poisson distribution with mean \(\lambda \) as \(\text{Poi}(\cdot | \lambda) \) we thus have
\[p(n_{s,e}) = p(z_{[s],l,k]}; a_{[s]} = n_{s,e}! \text{Poi}(n_{s,e} | \alpha_{e})(n_{\omega} | A_s|)^{-n_{s,e}}. \]
(9)

Next, \(p(n_{s,m}) = n_{s,m}! \text{Poi}(n_{s,m} | \alpha_{m} | A_s) \) is the prior probability for having \(n_{s,m} \) meta-objects in scene \(s \). The dish parameters of a meta-object IBP are the meta-object parameters \(C_j \), consisting of the pose, type, and part activations. The likelihood for sampling a pose \(p(T_j) = (|A_s| 2\pi)^{-1} \) is uniform over the table surface and uniform in orientation, hence \(p(T) = \prod_{s=1}^{S} (|A_s| 2\pi)^{-n_{s,m}} \). Next, \(p(t) \) is the CRP prior for the meta-object types of all meta-object instances. The factors \(p(d_{[t]} | t) \) are the IBP priors for the part activations.
for all meta-object instances of type t and there are n_t different types currently instantiated. During MCMC sampling, we will only need the conditional distribution for a single meta-object j

$$p(t_j, d_j \mid t_{[-j]}, d_{[-j]}) = p(d_j \mid d_{[-j],t_j}, t)p(t_j \mid t_{[-j]}). \quad (10)$$

Here, $p(t_j \mid t_{[-j]})$ is the CRP predictive distribution

$$p(t_j = i \mid t_{[-j]}) = \begin{cases} \frac{n_i}{\alpha_c + \sum_i n_i} & i \text{ is an existing type} \\ \frac{\alpha_c}{\alpha_c + \sum_i n_i} & i \text{ is a new type} \end{cases},$$

and n_i is the number of meta-object instances of type i (not counting instance j) and α_c is the concentration parameter of the CRP. Further, $p(d_j \mid d_{[-j],t_j}, t)$ is the predictive distribution of the two-parameter IBP, which factors into activation probabilities for each of the existing parts and an additional factor for the number of new parts, denoted as n_+. An existing part is a part that has been activated by at least one other meta-object instance of this type in any of the scenes. The activation probability for an existing part k is

$$p(d_{jk} \neq 0 \mid d_{[-j],t_j}, t) = \frac{n_k}{n_{t_j} + c_p},$$

where c_p is the concentration parameter of the part IBP, n_k is the number of meta-object instances that have part k activated in any of the scenes, and n_{t_j} is the total number of meta-object instances of type t_j in all scenes (the counts exclude the meta-object j itself). The probability for having n_+ associations to new parts is

$$p(d_{j,+} \mid d_{[-j],t_j}, t) = n_+! \text{Poi} \left(n_+ \left| \frac{c_p\alpha_p}{n_{t_j} + c_p} \right. \right),$$

where α_p is the mass parameter of the part IBP, and $d_{j,+}$ denotes the associations to new parts.

As stated in Eq. (9), the data likelihood $p(z_{|d}) \mid T, d, t)$ for the objects associated to meta-objects factors into likelihoods for each individual part k. Further, it factors into a spatial component and a component for the observable object type. As the meta-object poses T are given, we can transform the absolute positions $x_{(d_{[k]})}$ of the objects associated to a certain part k of meta-object type t into relative positions $x_{(d_{[k]})}$ with respect to a common meta-object reference frame. The relative positions are assumed to be sampled from the part’s Gaussian distribution which in turn is sampled from a normal-Wishart distribution. As the Gaussian and the normal-Wishart distribution form a conjugate pair, we can analytically integrate out the part’s Gaussian distribution which therefore does not have to be explicitly represented. Hence, the joint likelihood for $x_{(d_{[k]})}$ of part k is computed as the marginal likelihood under a normal-Wishart prior. During MCMC inference, we only need to work with the posterior predictive distribution

$$p(\tilde{x}_{(d_{[k]})} \mid \tilde{x}_{(d_{[-j],t_j])}) = t_q(\tilde{x}_{(d_{[k]})} \mid \mu, \Sigma) \quad (14)$$

for a single relative position given the rest. This is a multivariate t-distribution t_q with parameters μ, Σ depending both on $\tilde{x}_{(d_{[-j],t_j])}$ and the parameters of the normal-Wishart prior – for details see [3]. Similarly, the part’s multinomial distribution over the observable object types can be integrated out as it forms a conjugate pair with the Dirichlet distribution. The posterior predictive distribution for a single object type is

$$p(\omega_{[d_{jk}]} \mid \omega_{[d_{[-j],t_j,k}]}) = \frac{n_{\omega} + \alpha_\omega}{\sum_\omega(n_{\omega} + \alpha_\omega)},$$

where n_{ω} is the number of times an object of type ω has been associated to part k of this meta-object type t_j, and α_ω is the pseudo-count of the Dirichlet prior. When describing the MCMC moves, we will sometimes make use of the predictive likelihood for all objects $z_{(d_{[j]})}$ associated to a single meta-object instance j. This likelihood factors into the posterior predictive distributions of the individual parts and their spatial and object type components, as described above. In the following, we will describe the various MCMC moves in detail.

Death (birth) move: $(T_j, t_j, d_j, a) \rightarrow (a^*)$. A death move selects a meta-object j uniformly at random, adds all of its currently associated objects to the noise process and removes the meta-object j from the model. The proposal probability for this move is $q_d(C_{-j}, a^* \mid C_j, C_{-j}, a) = (n_m)^{-1}$ where n_m denotes the number of instantiated meta-objects in this scene before the death move. To simplify notation, we will just write $q_d(C_j)$ for the probability of deleting meta-object j. The reverse proposal is the birth proposal $q_b(C_j^*, C_{-j}, a^* \mid C_{-j}, a, z)$ that proposes new parameters $C_j^* = \{T_j^*, d_j^*, \ldots\}$ for an additional abstract meta-object: the pose T_j^*, the type t_j^*, and the associations d_j^*. The new meta-object may reference any of the objects previously associated to the noise process and any non-referenced noise objects remain associated to the noise process. We will describe the details of the birth proposal in detail later on. To simplify notation, we will just write $q_b(C_j)$ for the birth proposal. Plugging in the model and proposal distributions in the MH ratio and simplifying we arrive at the acceptance ratio of the death move

$$R_d = \frac{1}{p(z_{|d}) \mid z_{(d_{[-j],t_j])}, T_{(t_j)}, d_{(d_{[-j],t_j])})p(t_{j}, d_{j} \mid t_{[-j]}, d_{[-j]})} \frac{1}{p(n_m - 1) p(n_+ p_{(n_m)}) q_b(C_j)}$$

$$= \frac{1}{p(T_j) p(n_m) p_q(C_j)}$$

The counts n_j, n_m, and n_+ refer to the state before the death move, and n_m denotes the number of meta-objects in this scene, n_j are the number of objects currently associated to meta-object j, and n_+ is the number of noise objects. The ratio of a birth move is derived similarly.

Switch move: $(T_j, t_j, d_j, a) \rightarrow (T_j^*, t_j^*, d_j^*, a^*)$. This move is a combined death and birth move. It removes a meta-object and then proposes a new meta-object using the birth proposal. Thus, the number of meta-objects remains the same but one meta-object simultaneously changes its type t_j, pose T_j, and part associations d_j. The death proposals cancel out and the acceptance ratio of this move is

$$R_s = \frac{p(z_{|d}) \mid z_{(d_{[-j],t_j])}, T_{(t_j)}, T_{[-j],t_j}, d_{(d_{[-j],t_j])}, T_{j}^*, t_{j}^*, d_{[-j]})}{p(z_{|d}) \mid z_{(d_{[-j],t_j])}, T_{(t_j)}, T_{[-j],t_j}, d_{(d_{[-j],t_j])}, T_j, t_j, d_{[-j]})} \frac{p(t_{j}^*, d_{j}^* \mid t_{[-j]}, d_{[-j]} = p(T_j) p(n_+ p_{(n_m)}) q_b(C_j)}$$

$$= \frac{p(t_{j}^*, d_{j}^* \mid t_{[-j]}, d_{[-j]}) (p(T_j) p(n_+ p_{(n_m)}) q_b(C_j))}{p(t_{j}, d_{j} \mid t_{[-j]}, d_{[-j]}) (p(T_j) p(n_+ p_{(n_m)}) q_b(C_j))}.$$
Shift move: \((T_j) \rightarrow (T'_j)\). This move disturbs the pose \(T_j\) of a meta-object by adding Gaussian noise to it while the type and part associations remain unchanged. The acceptance ratio depends only on the spatial posterior predictive distributions of the objects associated to this meta-object. The proposal likelihoods cancel due to symmetry and the final ratio is

\[
R_T = \frac{p(x_{[d_j]} \mid x_{[d_{[j,t_j]}]}, T'_j, T_{[-j,t_j]}, d_{[-j,t_j]}, t_p(T'_j))}{p(x_{[d_j]} \mid x_{[d_{[j,t_j]}]}, T_j, T_{[-j,t_j]}, d_{[-j,t_j]}, t_p(T_j))} \cdot (18)
\]

Association move (existing part): \((d_j, a) \rightarrow (d'_j, a^*)\). This move samples the part activation and object association of an existing part \(k\) of a single meta-object \(j\). In the IBP metaphor, this corresponds to sampling the selection of a single existing dish (part) for a single customer (meta-object instance). If the existing part is already associated with an object, we consider this object to be temporarily re-associated to the noise process (such that there are now \(n_x\) noise objects). We then use Gibbs sampling to obtain one of \(n_x + 1\) possible associations: either the part \(k\) is inactive \((d_{j,k}=0)\) and not associated with any object, or it is active \((d_{j,k} \neq 0)\) and associated with one out of \(n_x\) currently available noise objects (e.g. \(z_i\) when \(d_{j,k}=i\)). The probabilities for these cases are proportional to

\[
p(d_{j,k}=i) \propto \begin{cases} p(d_{j,k}=0 \mid d_{[-j,t_j,k]}, t)p(n_x) & i=0 \\ p(z_i \mid z_{[d_{[-j,t_j,k]}]}, T_{[-j,t_j]}, d_{[-j,t_j,k]}, t) & \text{otherwise} \\ p(d_{j,k} \neq 0 \mid d_{[-j,t_j,k]}, t)p(n_x-1) & i \neq 0 \end{cases} \tag{19}
\]

Association move (new parts): \((d_j, a) \rightarrow (d'_j, a^*)\). This move samples the associations of objects to new parts. For this, we use two complementary MH moves: one move increases the number of new parts by one by assigning a noise object to a new part, while the other move decreases the number of new parts by one by assigning an associated object (of a new part) to the noise process. The acceptance ratio for removing object \(z_i\) from a new part \(k\) of meta-object \(j\) that currently has \(n_x\) new parts is

\[
R_- = \frac{1}{p(z_i \mid T_j, d_{j,k})} \frac{p(d'_{[j,+]} \mid d_{[-j,t_j]}, t) p(n_x+1) q_+}{p(d_{[j,+]} \mid d_{[-j,t_j]}, t) p(d_{[-j,t_j]}, t) p(n_x) q_-} \tag{20}
\]

The proposal \(q_- = (n_x)^{-1}\) chooses one of the new parts to be removed uniformly at random, while the reverse proposal \(q_+ = (n_x+1)^{-1}\) chooses uniformly at random one of then \(n_x\) noise objects to be associated to a new part. The MH move that increases the number new parts is derived similarly.

Birth proposal: \(q_b(T_j, t_j, d_j)\). The birth, death, and switch moves rely on a birth proposal that samples new meta-object parameters \(C_j = \{T_j, t_j, d_j\}\). The general idea is to sample the pose \(T_j\) and type \(t_j\) in a first step. We then proceed to sample the associations \(d_j\) given \(T_j\) and \(t_j\), i.e., the potential assignment of noise objects to the parts of this meta-object.

Sampling \(T_j\) and \(t_j\) is done in either of two modes: the object mode or the matching mode. In object mode, we choose an object uniformly at random and center the meta-object pose \(T_j\) at the object’s location (with random orientation) and add Gaussian noise to it. The type \(t_j\) is sampled from the current predictive distribution of the type CRP. In contrast, the matching mode was inspired by bottom-up top-down approaches and aims to propose \(T_j\) and \(t_j\) in a more efficient way by considering the currently instantiated meta-object types in the model. However, in contrast to the object mode, it cannot propose new meta-object types (new tables in the type CRP). It selects two objects and associates them to a suitable part pair. This suffices to define the pose \(T_j\) as the corresponding transformation of these parts into the scene. In detail, we first sample one of the objects \(z_i\) at random and choose its nearest neighbor \(z_j\). We match this ordered pair \((z_i, z_j)\) against all ordered part pairs \((k_i, k_j)\) of the meta-object types to obtain their matching probabilities \(p_m\) with respect to the parts’ posterior predictive means, \(\mu_{k'_i}\) and \(\mu_{k'_j}\), of the spatial distribution, and their posterior predictive distributions, \(M_{k_i}\) and \(M_{k_j}\), over the observable object types \(\omega_i\) and \(\omega_j\).

\[
p_m((k_i', k_j') \mid (z_i, z_j)) \propto N(d_{\Delta} \mid 0, \sigma_m^2) M_{k_i} (\omega_i) M_{k_j} (\omega_j). \tag{21}
\]

Here, \(d_{\Delta} = \|x_i - x_j\| = \|\mu_{k_i} - \mu_{k_j}\|\) is the residual of the objects’ relative distance w.r.t. the distance of the posterior means and \(\sigma_m^2\) is a fixed constant. We then sample a part pair \((k_i', k_j')\) according to its matching probability to define, together with the objects \(z_i\) and \(z_j\), the pose \(T_j\). Finally, we add Gaussian noise to \(T_j\). The sampled part pair implicitly defines the meta-object type \(t_j\).

After having sampled \(T_j\) and \(t_j\) using either of these two modes, the next step is to sample the associations \(d_j\). For this, we randomly choose, without repetition, a noise object and use Gibbs sampling to obtain its association to either: (a) a yet unassociated part of the meta-object instance; (b) a new part of the meta-object instance; or (c) be considered a noise object. The probabilities for (a) and (b) are proportional to the spatial and object type posterior predictive distributions of the respective parts, while (c) is based on the noise IBP’s base distribution. Besides sampling from the proposal distribution we also need to be able to evaluate the likelihood \(g_b(C_j)\) for sampling a given parameter set \(C_j\). For this, we need to marginalize over the latent variables of the proposal, e.g. the binary mode variable (object mode or matching mode), the chosen object \(z_i\), and the chosen part pair of the matching mode.

IV. EXPERIMENTS

We tested our model on both synthetic data and real-world data acquired with a Kinect camera.

A. Synthetic Data

In the synthetic data experiment, table scenes were generated automatically using a different, hand-crafted generative model. We generated 25 training scenes ranging from two to six covers. The cover types represent two different breakfast types. The first type consists of a cereal bowl and a spoon, while the second type consists of a plate with a glass, a fork and a knife. A fork can be randomly placed at the right or the left of a plate or being absent.
The latent parameters are inferred using all the generated training scenes and setting the hyperparameters to $\alpha_e = 0.5$, $c_p = 0.25$, $\alpha_p = 2.5$, $\alpha_t = 5$, and $\alpha_c = 1$. As a first test, we wanted to show that the model is able to segment the scenes in a consistent and meaningful way. The results of this test are shown in Fig. 5a. A set of different scenes are segmented by using the learned model. We see that each scene has been segmented with the same cover types and objects are correctly clustered. Note that the color (gray-scale value) of the meta-objects and of the parts can change in every run, since the ordering of types and meta-objects is not relevant in our model. What is important is that the topological and metrical configuration are respected.

A second test is to see if the model can infer the meta-objects in incomplete scenes and if it is able to complete them. To this end, we artificially eliminated objects from already generated scenes and segmented the altered scene again using the learned model. We discovered that the approach was able to infer the correct cover type even in the absence of the missing object. As can be seen in Fig. 8a, the approach correctly segmented and recognized the meta-objects and is aware of the missing plate (the red branch of the hierarchy that is not grounded on an existing object). The missing object can then be inferred by sampling from the part’s posterior predictive distribution over the location and type of the missing object, as the one shown in Fig. 6 (left).

B. Real-world Data

We used a Microsoft Kinect depth camera to identify the objects on the table by, first, segmenting the objects by subtracting the table plane in combination with a color-based segmentation. Second, we detect the objects based on the segmented pointcloud using a straight forward feature-based
object detection system with a cascade of one-vs-all classifiers. An example for the segmentation and object identification is shown in Fig. 7. Note that there are likely to be better detection systems, however, the task of detecting the objects on the table is orthogonal to the scientific contribution of this paper.

The same set of tests performed on the synthetic data have been performed also in this case, showing basically the same results. In particular, Fig. 5b shows the segmentation results, Fig. 8b shows a modified scene where a plate has been removed and Fig. 9 (right) shows the posterior predictive distribution for location and type, as for the synthetic case, that can be used to complete an incomplete scene.

To better illustrate the inference process, we plot the log-likelihood, the number of parts, and the number of meta-object types as they evolve during MCMC sampling. The red (dark gray) lines correspond to the synthetic data set and the blue (light gray) lines to the real-world data set.

V. CONCLUSION

This paper presents a novel and fully probabilistic generative model for unsupervised scene analysis. Our approach is able to model the spatial arrangement of objects. It maintains a nonparametric prior over scenes, which is updated by observing scenes and can directly be applied for parsing new scenes and for model completion by inferring missing objects in an incomplete scene. Our model applies a combination of a Dirichlet process and beta processes, allowing for a probabilistic treatment of the model complexity. In this way, we avoid a model selection step, which is typically intractable for the models considered here. To evaluate our approach, we successfully used our approach to infer missing objects in complex scenes.

ACKNOWLEDGMENTS

This work has been supported by the German Research Foundation (DFG) under contract number SFB/TR 8 Spatial Cognition (R6-[SpaceGuide]) and by the EC under contract number FP7-ICT-248258-First-MM.

REFERENCES