Deterministic planning: problem instances

A problem instance is a 4-tuple \((P, I, O, G)\) where

1. \(P\) is a finite set of state variables,
2. \(I\) is a state (a valuation of \(P\)) called the initial state,
3. \(O\) is a finite set of operators over \(P\), and
4. \(G\) is a propositional formula over \(P\) (the goal).

Properties of plans

Let \((P, I, O, G)\) be a problem instance.

1. There is a plan of length 0 iff \(I \models G\).
2. Shortest plan may not be longer than \(2^n - 1\): If a plan is longer, then it visits some state \(s\) more than once and has the form \(s_1 \# s_2 \# s_3\); the plan \(s_1 s_2 s_3\) is shorter.
3. Shortest plan may have length \(2^n - 1\): Reach the goal state \(111\ldots1\) from the initial state \(000\ldots0\) by an operator that increments the corresponding binary number \(2^n - 1\) times.

Deterministic planning: expressivity

The decision problem SAT: test whether a given propositional formula \(\phi\) is satisfiable.

\[
\begin{align*}
P & = \text{the set of propositional variables occurring in } \phi \\
I & = \text{any state, e.g. all state variables have value 0} \\
O & = \{ \{ \top \} \times P \} \cup \{ \{ \neg \top \} | p \in P \} \\
G & = \phi
\end{align*}
\]

The problem instance has a solution if and only if \(\phi\) is satisfiable.
Deterministic planning: expressivity

- Because we have a polynomial-time translation from SAT to deterministic planning, and SAT is an NP-complete problem, we have a polynomial time translation from every decision problem in NP to deterministic planning.

- Does deterministic planning have the power of NP, or is it still more powerful?

Turing machines

A Turing machine \((\Sigma, Q, \delta, q_0, g)\) consists of

1. an alphabet \(\Sigma\) (a set of symbols),
2. a set \(Q\) of internal states,
3. a transition function \(\delta\) that maps \((q, s)\) to a tuple \((s', q', m)\) where \(q, q' \in Q, s \in \Sigma \cup \{\#, \\square\}, s' \in \Sigma\) and \(m \in \{L, N, R\}\),
4. an initial state \(q_0 \in Q\), and
5. a labeling \(g : Q \rightarrow \{\text{accept, reject, } \exists\}\) of states.

TMs, example

TM accepting strings \(\epsilon, 1, 12, 121, 1212, \ldots\) is \((\Sigma, Q, \delta, q_1, g)\) where

\[
\begin{align*}
\Sigma &= \{1, 2\}, \\
Q &= \{q_1, q_2, q_3, q_4\}, \\
g(q_1) &= \exists, \\
g(q_2) &= \exists, \\
g(q_3) &= \text{accept}, \\
g(q_4) &= \text{reject}, \\
d(q_1, 1) &= (1, q_2, R) \\
d(q_1, \#) &= (1, q_3, R) \\
d(q_1, s) &= (1, q_4, R) \text{ for all other } q, s \\
d(q_2, 1) &= (1, q_4, R) \\
d(q_2, 2) &= (2, q_1, R) \\
d(q_2, \#) &= (2, q_3, R) \\
d(q_2, s) &= (2, q_4, R) \text{ for all other } q, s \\
d(q_3, 1) &= (1, q_4, R) \\
d(q_3, 2) &= (2, q_1, R) \\
d(q_3, \#) &= (2, q_3, R) \\
d(q_3, s) &= (2, q_4, R) \text{ for all other } q, s \\
d(q_4, 1) &= (1, q_4, R) \\
d(q_4, 2) &= (2, q_1, R) \\
d(q_4, \#) &= (2, q_3, R) \\
d(q_4, s) &= (2, q_4, R) \text{ for all other } q, s \\
\end{align*}
\]

TMs, example: cont'd

What does the TM do with the string 12122?

\[
\begin{align*}
q_1 &= 12122R \\
q_2 &= 12122R \\
q_3 &= 12122R \\
q_1 &= 12122R \\
q_4 &= 12122R \\
\end{align*}
\]

The label \(g(q_4) = \text{reject}\). The TM does not accept the string.
Simulation of PSPACE Turing machines

We show how polynomial-space Turing machines can be simulated by planning.

- contents of tape cells are encoded as state variables
- R/W head location is encoded as state variables
- internal state of the TM is encoded as state variables
- transitions are encoded as operators

A given Turing machine M accepts an input string σ if and only if a problem instance $T(M, \sigma) = \langle P, I, O, G \rangle$ has a plan.

PSPACE simulation I

Simulate a TM $= (\Sigma, Q, \delta, q_0, g)$ that needs at most $p(n)$ tape cells on an input string of length n.

State variables in the problem instance in planning are

1. $\{q_1, \ldots, q_{|Q|}\} = Q$ for denoting the current state of the TM,
2. s_i for every symbol $s \in \Sigma \cup \{\#, \square\}$ and tape cell $i \in \{0, \ldots, p(n)\}$,
3. h_i for every $i \in \{0, \ldots, p(n)\}$ (position of the R/W head).

PSPACE simulation II

1. $I(q_0) = 1$ and $I(q) = 0$ for all $q \in Q \setminus \{q_0\}$.
2. $I(s_i) = 1$ if $i < n$ and input symbol i is s.
3. $I(s_i) = 0$ if $i < n$ and $s \in S$ and symbol i is not s.
4. $I(\#_i) = 1$ iff $i \in \{n, \ldots, p(n) - 1\}$
5. $I(\square_i) = 1$ iff $i = 0$
6. $I(h_i) = 1$ iff $i = 1$

PSPACE simulation III

Goal of the problem instance is to reach an accepting state.

$$G = \bigvee \{q \in Q | g(q) = \text{accept}\}.$$
PSPACE simulation IV

For all \(s \in \Sigma \cup \{[,\square]\} \) and \(q \in Q \) and \(i \in \{0, \ldots, p(n)\} \) with \(\delta(q,s) = (s',q',m) \) and \(m \neq R \) or \(i < p(n) \), define

\[
o_{s,q,i} = \langle h_i \land s_i \land q \land \chi \land \mu \rangle
\]

where

\(\chi \) is

\(-q \land q' \text{ if } q \neq q', \text{ and } \top \text{ otherwise, and}\)

\(\mu \) is

\(\top \text{ if } m = N \)

\(-h_i \land h_{i-1} \text{ if } i > 0 \text{ and } m = L, \text{ and } \top \text{ if } i = 0 \text{ and } m = L \)

\(-h_i \land h_{i+1} \text{ if } i < p(n) \text{ and } m = R, \text{ and } \top \text{ if } i = p(n) \text{ and } m = R \)

Example: a Turing machine

Turing machine \(\langle \{A, B\}, \{q_1, q_2, q_{\text{acc}}\}, \delta, q_1, g \rangle \) where \(\delta \) is

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(A, q_1, R)</td>
<td>(B, q_2, N)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(A, q_1, L)</td>
<td>(B, q_2, N)</td>
</tr>
<tr>
<td>(q_{\text{acc}})</td>
<td>(^-)</td>
<td>(^-)</td>
</tr>
</tbody>
</table>

and \(g(q_{\text{acc}}) = \text{accept} \), \(g(q_1) = \exists \) and \(g(q_2) = \exists \).

Input string: ABAAB

Example: translation to planning

Construct \(\langle P, I, O, G \rangle \) where

1. \(P = \{q_1, q_2, q_{\text{acc}}, h_0, \ldots, h_{p(5)}, A_0, \ldots, A_{p(5)}, B_0, \ldots B_{p(5)} \ldots \} \)

2. \(I \models [0 \land A_1 \land A_2 \land A_3 \land A_4 \land B_5 \land \square_6 \land \square_7 \land \cdots \land \square_{p(5)} \land \neg A_0 \land \neg B_0 \land \neg \square_0 \land \cdots \)

3. operators \(O \) are on the next slide

4. \(G = q_{\text{acc}} \)
Example: translation to planning

Only part of the about \(\{0,1,\ldots,p(5)\} \times \{q_1, q_2\} \times \{A, B, \Box\}\) operators are given below, for R/W head position 1 and input symbols A and B:

\[
O = \{ \langle h_1 \land A_1 \land q_1, \neg h_1 \land h_0 \rangle, \ldots, \\
\langle h_1 \land B_1 \land q_1, \neg q_1 \land q_2 \rangle, \ldots, \\
\langle h_1 \land A_1 \land q_2, \neg q_2 \land q_1 \land \neg h_1 \land h_0 \rangle, \ldots, \\
\langle h_1 \land B_1 \land q_2, \neg B_1 \land A_1 \land \neg q_2 \land q_{acc} \rangle, \ldots \}
\]

Deterministic planning can be solved in PSPACE

Existence of plans of length \(\leq 2^n\):

PROCEDURE reach\((s, s', n)\)

IF \(n = 0\) *THEN*

IF \(s = s'\) *OR* \(s' = \text{app}_o(s)\) *for some* \(o \in O\) *THEN RETURN* true

ELSE RETURN false;

ELSE

FOR all states \(s''\) *DO*

IF reach\((s, s'', n - 1)\) *AND* reach\((s'', s', n - 1)\) *THEN RETURN* true

END

RETURN false;

Deterministic planning can be solved in PSPACE

Recursive algorithm for testing \(m\)-step reachability between two states with \(\log m\) memory consumption.

reach\((s0, s8, 3)\)
reach\((s, s', 2)\)
reach\((s, s', 1)\)
reach\((s, s', 0)\)

Correctness:

For problem instance \(N\) with \(n\) state variables, \(N\) has a plan if and only if reach\((I, s', n)\) returns true for some \(s'\) such that \(s' \models G\).

Memory Consumption:

If number of states is \(2^n\), then recursion depth is \(n\). At each recursive call only one state \(s''\) is represented, taking space \(O(n)\), which means that total memory consumption at any time point is \(O(n^2)\), which is polynomial in the size of the problem instance.
Progression

- Progression is computing the successor state $s_{\alpha}(s)$ of s with respect to α.
- Used in forward search in a transition system: from the initial state toward the goal states.
- Efficient to implement.
- Only for deterministic planning: nondeterministic operators may produce a set of states from one state.

Search algorithms 1: Search with progression

depth-first search, breadth-first search, iterative deepening, informed search, ...

Search algorithms: systematic vs. local

Systematic algorithms:
- Keep track of all the states already visited.
- Memory consumption may be high.
- Always find a plan if one exists.
- depth-first, breadth-first, A*, IDA*, WA*, best-first, ...

Local search algorithms:
- Keep track of only one search state at a time.
- Find a plan with a high probability (given enough time...).
- Cannot determine that no plans exist.
- hill-climbing, simulated annealing, tabu search, ...
Search algorithms: A*

Use the function $f(s) = g(s) + h(s)$ to guide search:

- $g(s) =$ cost so far (number of operators)
- $h(s) =$ estimated remaining cost (estimated distance)

$h(s)$ must be less than or equal the real remaining cost (distance): otherwise A* is not guaranteed to find an optimal solution. (admissibility of $h(s)$).

(IDA* improves A* on memory consumption.)

Search algorithms: A*, cont’d

The algorithm tries to reach a state in G from I as follows.

1. OPEN := $\{I\}$, CLOSED := \emptyset.
2. If some state in G is in OPEN, then stop: solution found.
3. If OPEN = \emptyset, then stop: no solution.
4. Choose an element $s \in$ OPEN with the least $f(s)$.
5. OPEN := OPEN \ $\{s\}$, CLOSED := CLOSED \cup $\{s\}$.
6. OPEN := OPEN \cup $\{app_o(s) | o \in O \setminus$ CLOSED $\}$.
7. Go to 2.
Search algorithms: \(A^*, \) example

A general property of (planning) algorithms: finding optimal solutions is much more difficult than finding any solution.

- By sacrificing optimality of \(A^*\), plans can be found faster.
- \(WA^*\) uses \(f(s) = g(s) + Wh(s)\) for \(W \geq 1\).
- With \(W = 1\) we have \(WA^* = A^*\).
- With \(W > 1\) search will be suboptimal and faster.
- Plan length may be \(W\) times the optimum.
Search algorithms: best-first search

- Like WA*, but the cost-so-far is ignored completely.
- Best-first search uses $f(s) = h(s)$ for $W \geq 1$.
- No guarantees on plan length.

Search space vs. state space

Search space does not in general coincide with state space. Exception: forward search with a systematic search algorithm, because the systematic search algorithm can be implemented so that it keeps track of the sequence of actions that have been taken.

Plan search: search states for progression

For progression, the search state is represented as a sequence of operators and associated states.

$s_I, o_1, s_1, o_2, s_2, \ldots, o_n, s_n$

The neighbors of the state are those obtained by progression with respect to one of the operators or by dropping out some of the last operators and associated states:

1. $s_I, o_1, s_1, o_2, s_2, \ldots, o_n, s_n, o, \text{app}_o(s_n)$ for some $o \in O$
2. $s_I, o_1, s_1, o_2, s_2, \ldots, o_i, s_i$ for $i < n$ (for local search only)

Local search: random walk

1. $s := I$
2. If $s \in G$, stop: goal state has been reached.
3. Randomly choose a neighbor s' of s.
4. $s := s'$
5. Go to 2.
Local search: steepest descent hill-climbing

1. $s := I$
2. If $s \in G$, stop: goal state has been reached.
3. Randomly choose neighbor s' of s with the least $h(s')$.
4. $s := s'$
5. Go to 2.

Problem: The algorithm gets stuck in local minima.

Local search: simulated annealing

1. $s := I$
2. If $s \in G$, stop: goal state has been reached.
3. Randomly choose a neighbor s' of s.
4. If $h(s') < h(s)$ go to 7.
5. With probability $\exp(-\frac{h(s')-h(s)}{T})$ go to 7.
6. Go to 3.
7. $s := s'$
8. Decrease T. (There are many strategies for doing this!!)
9. Go to 2.

The temperature T is initially high and then gradually decreased.