Distance estimation for heuristic search

- PROBLEM: How to compute good distance/cost estimates \(h(s) \) for controlling heuristic search algorithms like A*, best-first search or local search algorithms?
- If we knew the distances exactly, it would be very easy to choose one of the operators that takes us one step closer to a goal state. (Computing exact distances is PSPACE-hard!)
- Compute a lower bound \(\delta_s(G) \) on the number of operators needed to reach a goal state from \(s \).

Distance estimation: example, blocks world

We have three blocks initially with A on B and B on C:

\[
D_0 = \{ \text{A-CLEAR, A-ON-B, B-ON-C, C-ON-TABLE, } \neg\text{A-ON-C, } \\
\neg\text{B-ON-A, } \neg\text{C-ON-A, } \neg\text{C-ON-B, } \neg\text{A-ON-TABLE,} \\
\neg\text{B-ON-TABLE, } \neg\text{B-CLEAR, } \neg\text{C-CLEAR} \}
\]

\[
D_1 = \{ \text{A-CLEAR, B-ON-C, C-ON-TABLE, } \neg\text{A-ON-C, } \neg\text{B-ON-A,} \\
\neg\text{C-ON-A, } \neg\text{C-ON-B, } \neg\text{B-ON-TABLE, } \neg\text{C-CLEAR} \}
\]

\[
D_2 = \{ \text{C-ON-TABLE, } \neg\text{A-ON-C, } \neg\text{C-ON-A, } \neg\text{C-ON-B} \}
\]

\[
D_3 = \emptyset
\]
Inaccuracy of the representation

Consider the initial state 0000 (with state variables D, E, F, G).
\(D_0 = \{ \neg D, \neg E, \neg F, \neg G \} \) represents the states \{0000\}.

The operators are \(O = \{ (\neg D, E), (\neg E, D) \} \).

Now \(D_1 = \{ \neg F, \neg G \} \), and it represents \{0000, 0100, 1000, 1100\}.

However, the state 1100 is not reachable from 0000!

The function makestrue\((l, O)\)

\(\phi \in \text{makestrue}(l, O) \) if there is an operator in \(O \) that is applicable and makes literal \(l \) true whenever \(\phi \) is true.

EXAMPLE: Let \(\phi = (A \land B, R \land (Q \lor C) \land (R \lor C)) \). Now

\(\text{makestrue}(C, \{\phi\}) = \{ A \land B \land Q, A \land B \land R \} \).

REMARK: For operators without conditional effects this is just the set of preconditions of those operators that make the literal true.
The sets D_0, D_1, \ldots

Let $L = P \cup \{ \neg p | p \in P \}$ be the set of literals on P.

Define the sets D_i for $i \geq 0$ as follows.

$$
D_0 = \{ l \in L | s \models l \}
$$

$$
D_i = D_{i-1} \setminus \{ l \in L | \phi \in \text{makestrue}(\tilde{T}, O), \text{canbetrue}(\phi, D_{i-1}) \}
$$

If $n = |P|$, then $D_n = D_{n+1}$, because at most n times there can be a literal contained in D_i but not in D_{i+1}.

The procedure canbetrue(ϕ, D)

canbetrue(ϕ, D) returns true whenever $D \cup \{ \phi \}$ is satisfiable.

Equivalently: there is a state described by the literals in D in which ϕ is true.

The procedure runs in polynomial time but satisfiability testing is NP-hard (known algorithms take exponential time).

The procedure fails in one direction: e.g. canbetrue($A \land \neg A, \emptyset$) returns true (BUT does not invalidate distance estimation, which is not meant to be accurate anyway!!)

The procedure canbetrue(ϕ, D): definition

- $\text{canbetrue}(\bot, D) = \text{false}$
- $\text{canbetrue}(\top, D) = \text{true}$
- $\text{canbetrue}(p, D) = \text{true}$ iff $\neg p \notin D$ (for state variables $p \in P$)
- $\text{canbetrue}(\neg p, D) = \text{true}$ iff $p \notin D$ (for state variables $p \in P$)
- $\text{canbetrue}(\neg \phi, D) = \text{canbetrue}(\phi, D)$
- $\text{canbetrue}(\phi \lor \psi, D) = \text{canbetrue}(\phi, D)$ or $\text{canbetrue}(\psi, D)$
- $\text{canbetrue}(\phi \land \psi, D) = \text{canbetrue}(\phi, D)$ and $\text{canbetrue}(\psi, D)$
- $\text{canbetrue}(\neg(\phi \lor \psi), D) = \text{canbetrue}(\neg \phi, D)$ and $\text{canbetrue}(\neg \psi, D)$
- $\text{canbetrue}(\neg(\phi \land \psi), D) = \text{canbetrue}(\neg \phi, D)$ or $\text{canbetrue}(\neg \psi, D)$

The procedure canbetrue(ϕ, D): correctness

LEMMA A

Let ϕ be a formula and D a consistent set of literals (it contains at most one of p and $\neg p$ for every $p \in P$.) If $D \cup \{ \phi \}$ is satisfiable, then canbetrue(ϕ, D) returns true.

PROOF: by induction on the structure of ϕ.

Base case 1, $\phi = \bot$: The set $D \cup \{ \bot \}$ is not satisfiable, and hence the implication trivially holds.

Base case 2, $\phi = \top$: $\text{canbetrue}(\top, D)$ always returns true, and
hence the implication trivially holds.

Base case 3, $\phi = p$ for some $p \in P$: If $D \cup \{p\}$ is satisfiable, then $\neg p \notin D$, and hence canbetrue(p, D) returns true.

Base case 4, $\phi = \neg p$ for some $p \in P$: If $D \cup \{\neg p\}$ is satisfiable, then $p \notin D$, and hence canbetrue$(\neg p, D)$ returns true.

Inductive case 1, $\phi = \neg \phi'$ for some ϕ': The formulae are logically equivalent, and by the induction hypothesis we directly establish the claim.

Inductive case 2, $\phi = \phi' \lor \psi'$: If $D \cup \{\phi' \lor \psi'\}$ is satisfiable, then either $D \cup \{\phi'\}$ or $D \cup \{\psi'\}$ is satisfiable and by the induction hypothesis at least one of canbetrue(ϕ', D) and canbetrue(ψ', D) returns true. Hence canbetrue$(\phi' \lor \psi', D)$ returns true.

Inductive case 3, $\phi = \phi' \land \psi'$: If $D \cup \{\phi' \land \psi'\}$ is satisfiable, then both $D \cup \{\phi'\}$ and $D \cup \{\psi'\}$ are satisfiable and by the induction hypothesis both canbetrue(ϕ', D) and canbetrue(ψ', D) return true. Hence canbetrue$(\phi' \land \psi', D)$ returns true.

Inductive cases 4 and 5, $\phi = \neg(\phi' \lor \psi')$ and $\phi = \neg(\phi' \land \psi')$: Like cases 2 and 3 by logical equivalence.

Q.E.D.

Definition of distances for formulae

$$\delta_s(\phi) = \begin{cases} 0 & \text{if canbetrue}(\phi, D_0) \\ d & \text{if canbetrue}(\phi, D_d) \text{ and not canbetrue}(\phi, D_{d-1}) \text{ (for } d) \end{cases}$$

Definition of distances for formulae: correctness

LEMMA B

Let s be a state and D_0, D_1, \ldots the respective distance sets. If s' is the state reached from s by applying the operator sequence o_1, \ldots, o_n, then $s' \models D_n$.

PROOF: by induction on the length of the sequence.

Base case $n = 0$: The length of the operator sequence is zero, and hence $s' = s$. The set D_0 consists exactly of those literals that are true in s, and hence $s' \models D_0$.

Jussi Rintanen

April 28, AI Planning 13/31
Inductive case \(n \geq 1 \): Let \(s'' \) be the state reached from \(s \) by applying \(o_1, \ldots, o_{n-1} \). Now \(s' = \text{app}_{o_n}(s'') \). By the induction hypothesis \(s'' \models D_{n-1} \).

Let \(l \) be any literal in \(D_n \). We show that \(s' \models l \). Because \(l \in D_n \) and \(D_n \subseteq D_{n-1} \), also \(l \in D_{n-1} \), and hence by IH \(s'' \models l \).

Let \(\phi \) be any member of \(\text{makefalse}(l, \{o_n\}) \). Because \(l \in D_n \) it must be that \(\text{canbetrue}(\phi, D_{n-1}) \) returns false (Definition of \(D_n \)). Hence \(D_{n-1} \cup \{\phi\} \) is by Lemma A not satisfiable, and \(s'' \not\models \phi \). Hence applying \(o_n \) in \(s'' \) does not make \(l \) false, and finally \(s' \models l \).

Q.E.D.

Definition of distances for formulae: correctness

THEOREM

Let \(s \) be a state, \(\phi \) a formula, and \(D_0, D_1, \ldots \) the respective distance sets. If \(s' \) is the state reached from \(s \) by applying the operators \(o_1, \ldots, o_n \) and \(s' \models \phi \) for any formula \(\phi \), then \(\text{canbetrue}(\phi, D_n) \) returns true.

PROOF

By Lemma B \(s' \models D_n \). By assumption \(s' \models \phi \). Hence \(D_n \cup \{\phi\} \) is satisfiable. By Lemma A \(\text{canbetrue}(\phi, D_n) \) returns true.

Q.E.D.

Definition of distances for formulae: correctness

COROLLARY

Let \(s \) be a state and \(\phi \) a formula. Then for any sequence \(o_1, \ldots, o_n \) of operators such that executing them in \(s \) results in state \(s' \) such that \(s' \models \phi \), \(n \geq \delta_s(\phi) \).

PROOF

By the previous result \(\text{canbetrue}(\phi, D_n) \) returns true. Hence by definition \(\delta_s(\phi) \leq n \).

Q.E.D.

Distance estimation: example, distance 1 to 3

![Distance estimation diagram](image-url)
Distance estimation: example, distance 1 to 3

Let the state variables be \(A, B, C, D, E, F, G\).

\[
D_0 = \{ \neg A, \neg B, \neg C, \neg D, \neg E, \neg F, \neg G \} \\
D_1 = \{ \neg C, \neg D, \neg E, \neg G \} \\
D_2 = \{ \neg C, \neg G \} \\
D_3 = \emptyset \\
D_4 = \emptyset
\]

Estimated distance of state 3 is given by

\[
\delta_1(\neg A \land \neg B \land C \land \neg D \land \neg E \land \neg F \land \neg G) = 3
\]

Distance estimation: example II, distance 1 to 3

\[
\begin{align*}
D_0 &= \{ \neg A, \neg B, C \} \\
D_1 &= \emptyset \\
D_2 &= \emptyset
\end{align*}
\]

Estimated distance of state 3 is given by

\[
\delta_1(\neg A \land B \land C) = 1
\]

In fact, all states have estimated distance \(\leq 1\) from state 1.

CONCLUSION: Accuracy of distance estimates very much depends on the choice of state variables.

PDDL: domain files

A domain file consists of

- (define (domain DOMAINNAME))
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators
Example: blocks world in PDDL

(define (domain BLOCKS)
 (:requirements :adl :typing)
 (:types block - object
 blueblock smallblock - block)
 (:predicates (on ?x - smallblock ?y - block)
 (ontable ?x - block)
 (clear ?x - block)
)

PDDL: operator definition

- (:action OPERATORNAME
 - list of parameters: (?x - type1 ?y - type2 ?z - type3)
 - precondition: a formula
 - <schematic-state-var>
 - (and <formula> ... <formula>)
 - (or <formula> ... <formula>)
 - (not <formula>)
 - (forall (?x1 - typel ... ?xn - typen) <formula>)
 - (exists (?x1 - typel ... ?xn - typen) <formula>)
 - effect:
 - <schematic-state-var>
 - (not <schematic-state-var>)
 - (and <effect> ... <effect>)
 - (when <formula> <effect>)
 - (forall (?x1 - typel ... ?xn - typen) <effect>)

- (:action fromtable
 :parameters (?x - smallblock ?y - block)
 :precondition (and (not (= ?x ?y))
 (clear ?x)
 (ontable ?x)
 (clear ?y))
 :effect
 - (and (not (ontable ?x))
 (not (clear ?y))
 (on ?x ?y)))
PDDL: problem files

A problem file consists of

- (define (problem PROBLEMNAME)
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)

```
(define (problem blocks-10-0)
  (:domain BLOCKS)
  (:objects a b c - smallblock)
    d e - block
    f - blueblock)
  (:init (clear a) (clear b) (clear c) (clear d) (clear e) (clear f)
    (ontable a) (ontable b) (ontable c)
    (ontable d) (ontable e) (ontable f))
  (:goal (and (on a d) (on b e) (on c f)))
)
```

Example run on the FF planner

```
edu/PS04> ./ff -o hamiltonian.pddl -f haml.pddl
ff: parsing domain file, domain 'HAMILTONIAN-CYCLE'
ff: parsing problem file, problem 'HAM-1' defined
ff: found legal plan as follows
step  0: GO A B
    1: GO B D
    2: GO D F
    3: GO F C
    4: GO C E
    5: GO E A
0.01 seconds total time
```