Foundations of AI
15. Planning

The art and practice of thinking before acting
Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller

What is planning?

- Planning is the process of generating (possibly partial) representations of future behavior prior to the use of such plans to constrain or control that behavior:
- *Planning is the art and practice of thinking before acting* [Haslum]
- The outcome is usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents.

Planning tasks

Given a current state, a set of possible actions, a specification of the goal conditions, which plan transforms the current state into a goal state?
Another planning task: *Logistics*

Given a road map, and a number of trucks and airplanes, make a plan to transport objects from their start to their goal destinations.

Planning problem classes

- **Effects:** deterministic, non-deterministic, probabilistic
- **Observability** of the environment: complete, partial, not observable
- **Horizon:** finite, infinite
- **Objective:** reach goal, maintain property, maximize probability of reaching a state, maximize expected reward
- **Classical Planning:** deterministic actions, complete observability (in the beginning), finite horizon, reach goal
- **Conditional Planning:** non-deterministic actions, complete observability, finite horizon, reach goal
- **Markov Decision Processes (MDP):** probabilistic actions, complete obs., maximize expected reward

Domain-independent action planning

- Start with a **declarative specification** of the planning problem
- Use a **domain-independent planning** system to solve the planning problem
- Domain-independent planners are **generic problem solvers**
- **Issues:**
 - Good for evolving systems and those where performance is not critical
 - Running time should be comparable to specialized solvers
 - Solution quality should be acceptable
 - ... at least for all the problems we care about

Action planning is not...

- **Problem solving by search**, where we describe a problem by a state space and then implement a program to search through this space
 - in action planning, we specify the problem declaratively (using logic) and then solve it by a general planning algorithm
- **Program synthesis**, where we generate programs from specifications or examples
 - in action planning we want to solve just one instance and we have only very simple action composition (i.e., sequencing, perhaps conditional and iteration)
- **Scheduling**, where all jobs are known in advance and we only have to fix time intervals and machines
 - instead we have to find the right actions and to sequence them

〜 Of course, there is interaction with these areas!
The basic STRIPS formalism

STRIPS: STanford Research Institute Problem Solver

- S is a first-order signature and Σ_S denotes the set of ground atoms over the signature (also called facts or fluents).
- $\Sigma_{S, V}$ is the set of atoms over S using variable symbols from the set of variables V.
- A first-order STRIPS state S is a subset of Σ_{S} denoting a complete theory or model (using CWA).
- A planning task (or planning instance) is a 4-tuple $\Pi = (S, O, I, G)$, where
 - O is a set of operator (or action types)
 - $I \subseteq \Sigma_S$ is the initial state
 - $G \subseteq \Sigma_S$ is the goal specification
- No domain constraints (although present in original formalism)

Example formalization: Logistics

- Logical atoms: $at(O, L)$, $in(O, V)$, $airconn(L1, L2)$, $street(L1, L2)$, $plane(V)$, $truck(V)$
- Load into truck: $load$
 - Parameter list: (O, V, L)
 - Precondition: $at(O, L)$, $at(V, L)$, $truck(V)$
 - Effects: $-at(O, L)$, $in(O, V)$
- Drive operation: $drive$
 - Parameter list: $(V, L1, L2)$
 - Precondition: $at(V, L1)$, $truck(V)$, $street(L1, L2)$
 - Effects: $-at(V, L1)$, $at(V, L2)$
- ... (omitted)
- Some constant symbols: $t1$, s, c, $p1$ with $truck(t1)$ and $street(s, c)$
- Action: $drive(t1, s, c)$

Operators, actions & state change

- Operator:
 $$o = (\text{para}, \text{pre}, \text{eff})$$
 with $\text{para} \subseteq V$, $\text{pre} \subseteq \Sigma_{S, V}$, $\text{eff} \subseteq \Sigma_{S, V} \cup \neg \Sigma_{S, V}$
 (element-wise negation) and all variables in pre and eff are listed in para.
 Also: $\text{pre}(o)$, $\text{eff}(o)$.
 $\text{eff}^+ = \text{positive effect literals}$
 $\text{eff}^- = \text{negative effect literals}$
- Operator instance or action: Operator with empty parameter list (instantiated schema)
- State change induced by action:
 $$App(S, o) = \begin{cases}
 S \cup \text{eff}^+(o) - \text{eff}^-(o) & \text{if } \text{pre}(o) \subseteq S \& \text{eff}(o) \text{ is cons.} \\
 \text{undefined} & \text{otherwise}
 \end{cases}$$

Plans & successful executions

- A plan Δ is a sequence of actions
- State resulting from executing a plan:
 $$Res(S, \langle \rangle) = S$$
 $$Res(S, (o; \Delta)) = \begin{cases}
 Res(App(S, o), \Delta) & \text{if } App(S, o) \text{ is defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}$$
- Plan Δ is successful or solves a planning task if
 $Res(I, \Delta)$ is defined and $G \subseteq Res(I, \Delta)$.
A small *Logistics* example

Initial state: \(S = \{ \text{at}(p1, c), \text{at}(p2, s), \text{at}(t1, c), \text{at}(t2, c), \text{street}(c, s), \text{street}(s, c) \} \)

Goal: \(G = \{ \text{at}(p1, s), \text{at}(p2, c) \} \)

Successful plan: \(\Delta = \langle \text{load}(p1, t1, c), \text{drive}(t1, c, s), \text{unload}(p1, t1, s), \text{load}(p2, t1, s), \text{drive}(t1, s, c), \text{unload}(p2, t1, c) \rangle \)

Other successful plans are, of course, possible

Simplifications: DATALOG- and propositional STRIPS

- STRIPS as described above allows for unrestricted first-order terms, i.e., arbitrarily nested function terms
- **Infinite state space**
- Simplification: No function terms (only 0-ary = constants)
- **DATALOG-STRIPS**
 - Simplification: No variables in operators (= actions)
- **Propositional STRIPS**
 - used in planning algorithms nowadays (but specification is done using DATALOG-STRIPS)

Beyond STRIPS

Even when keeping all the restrictions of classical planning, one can think of a number of *extensions* of the planning language.

- **General logical formulas as preconditions**: Allow all Boolean connectors and quantification
- **Conditional effects**: Effects that happen only if some additional conditions are true. For example, when *pressing the accelerator pedal*, the effects depend on which gear has been selected (no, reverse, forward).
- **Multi-valued state variables**: Instead of 2-valued Boolean variables, multi-valued variables could be used
- ...
Current Approaches to Planning

- In 1992, Kautz and Selman introduced **planning as satisfiability**
- Encode possible k-step plans as Boolean formulas and use an iterative deepening search
- In 1995, Blum and Furst introduced **planning graphs**
- Iterative deepening approach that prunes the search space using a graph-structure
- In 1996, McDermott proposed to use (again) an **heuristic estimator** to control the selection of actions, similar to GPS
- Geffner (1997) followed up with a propositional, simplified version (HSP) and Hoffmann & Nebel (2001) with an extended version integrating strong pruning. (FF)
- Even better system is **FD** by Helmer
- Heuristic planners seem to be the most efficient sub-optimal planners these days

Iterative Deepening Search

1. Initialize $k = 0$
2. Try to construct a plan of length k exhaustively
3. If unsuccessful, increment k and goto step 2.
4. Otherwise return plan
- Finds shortest plan
- Needs to prove that there are no plans of length $1, 2, \ldots, k - 1$ before a plan of length k is produced.

Planning as Satisfiability

- Take the **dual perspective**: Consider all models satisfying a particular formula as plans
- Similar to what is done in the generic reduction that shows NP-hardness of SAT (simulation of a computation on a Turing machine)
- Build formula for k steps, check satisfiability, and increase k until a satisfying assignment is found
- Use time-indexed propositional atoms for facts and action occurrences
- Formulate constraints that describe what it means that a plan is successfully executed:
 - Only one action per step
 - If an action is executed then their preconditions were true and the effects become true after the execution
 - If a fact is not affected by an action, it does not change its value (frame axiom)

Planning as Satisfiability: Example

- **Fact atoms**:
 - $at(p1, s)_i$, $at(p1, c)_i$, $at(t1, s)_i$, $at(t1, c)_i$, $in(p1, t1)_i$
- **Action atoms**:
 - $move(t1, s, c)_i$, $move(t1, c, s)_i$, $load(p1, s)_i$, \ldots
- **Initial state**:
 - $at(p1, c)_1$, $at(p2, s)_1$, $at(t1, c)_1$
- **Only one action per step**:
 - $\bigwedge_{i,x,y} (\neg unload(t1, p1, x)_i \land load(p1, t1, y)_i) \land \ldots$
- **Preconditions**:
 - $\bigwedge_{i,x} (unload(p1, t1, x)_i \rightarrow \neg in(p1, t1)_i \land at(p1, x)_i) \land \ldots$
- **Effects**:
 - $\bigwedge_{i,x} (unload(p1, t1, x)_i \rightarrow \neg in(p1, t1)_i \land at(p1, x)_i) \land \ldots$
- **Frame axioms**:
 - $\bigwedge_{i,x,y,z} (move(t1, x, y)_i \rightarrow (at(t1, z)_{i-1} \leftrightarrow at(t1, z)_i)) \land \ldots$
- A satisfying truth assignment corresponds to a **plan** (use the true action atoms)
Advantages of the Approach

- Flexible search strategy
- Can make use of SAT solver technology
- ... and automatically profits from advances in this area
- Can express constraints on intermediate states
- Can use logical axioms to express additional constraints, e.g., to prune the search space

Planning Based on Planning Graphs

Main ideas:
- Describe possible developments in a graph structure (use only positive effects)
- Layered graph structure with fact and action levels
- Fact level (F level): positive atoms (the first level being the initial state)
- Action level (A level): actions that can be applied using the atoms in the previous fact level
- Links: precondition and effect links between the two layers
- Record conflicts caused by negative effects and propagate them
- Extract a plan by choosing only non-conflicting parts of the graph (allowing for parallel actions)

Parallelism (for non-conflicting actions) is a great boost for the efficiency.

Example Graph

\[I = \{ at(p1, c), at(p2, s), at(t1, c) \}, \ G = \{ at(p1, s), in(p2, t1) \} \]
Example Graph

- \(I = \{ at(p1, c), at(p2, s), at(t1, c) \}, G = \{ at(p1, s), in(p2, t1) \} \)
- All applicable actions are included
- In order to propagate unchanged properties, use \textit{noop} action, denoted by *

Example Graph

- \(I = \{ at(p1, c), at(p2, s), at(t1, c) \}, G = \{ at(p1, s), in(p2, t1) \} \)
- All applicable actions are included
- In order to propagate unchanged properties, use \textit{noop} action, denoted by *
- Expand graph

Example Graph

- \(I = \{ at(p1, c), at(p2, s), at(t1, c) \}, G = \{ at(p1, s), in(p2, t1) \} \)
- All applicable actions are included
- In order to propagate unchanged properties, use \textit{noop} action, denoted by *
- Expand graph as long as not all goal atoms are in the fact level

Plan Extraction

- Start at last fact level with goal atoms
- Select a minimal set of \textit{non-conflicting actions} that generate the goal atoms
 - Two actions are \textit{conflicting} if they have complementary effects or if one action deletes or asserts a precondition of the other action
- Use the preconditions of the selected actions as (sub-)goals on the next lower fact level
- \textbf{Backtrack} if no non-conflicting choice is possible
- If all possibilities are exhausted, the graph has to be \textit{extended} by another level.
Extracting From the Example Graph

Start with *goals* at highest fact level

Wrong choice leading to conflicting actions

Select minimal set of actions & corresponding *subgoals*

Other choice, but no further selection possible
Extracting From the Example Graph

Final selection

Propagation of Conflict Information: Mutex pairs

Idea: Try to identify as many pairs of conflicting choices as possible in order to prune the search space

- Any pair of conflicting actions is mutex (mutually exclusive)
- A pair of atoms is mutex at F-level i > 0 if all ways of making them true involve actions that are mutex at the A-level i
- A pair of actions is also mutex if their preconditions are...
- ... Actions that are mutex cannot be executed at the same time
- Facts that are mutex cannot be both made true at the same time
- Never choose mutex pairs during plan extraction

Plan graph search and mutex propagation make planning 1–2 orders of magnitude more efficient than conventional methods

Disadvantages of Iterative Deepening Planners

- If a domain contains many symmetries, proving that there is no plan up to length of \(k - 1 \) can be very costly.
- Example: Gripper domain:
 - there is one robot with two grippers
 - there is a room \(A \) that contains \(n \) balls
 - there is another room \(B \) connected to room \(A \)
 - the goal is to bring all balls to room \(B \)
- Obviously, the plan must have a length of at least \(n/2 \), but ID planners will try out all permutations of actions for shorter plans before noting this.
- Give better guidance

Heuristic Search Planning

- Use an heuristic estimator in order to select the next action or state
- Depending on the search scheme and the heuristic, the plan might not be the shortest one
- It is often easier to go for sub-optimal solutions (remember Logistics)
Deriving Heuristics: Relaxations

- General principle for deriving heuristics:
 - Define a simplification (relaxation) of the problem and take the difficulty of a solution for the simplified problem as an heuristic estimator
- Example: straight-line distance on a map to estimate the travel distance
- Example: decomposition of a problem, where the components are solved ignoring the interactions between the components, which may incur additional costs
- In planning, one possibility is to ignore negative effects

Ignoring Negative Effects: Example

- In Logistics: The negative effects in load and drive are ignored:
 - Simplified load operation: load\((O, V, P)\)
 - Precondition: \(at(O, P), at(V, P), truck(V)\)
 - Effects: \(\neg at(O, P), in(O, V)\)
 - After loading, the package is still at the place and also inside the truck
 - Simplified drive operation: drive\((V, P1, P2)\)
 - Precondition: \(at(V, P1), truck(V), street(P1, P2)\)
 - Effects: \(\neg at(V, P1), at(V, P2)\)
 - After driving, the truck is in two places!
- We want the length of the shortest relaxed plan \(h^+(s)\)
- How difficult is monotonic planning?

Monotonic Planning

Assume that all effects are positive

- finding some plan is easy:
 - Iteratively, execute all actions that are executable and have not all their effects made true yet
 - If no action can be executed anymore, check whether the goal is satisfied
 - If not, there is no plan
 - Otherwise, we have a plan containing each action only once
- Finding the shortest plan: easy or difficult?
 - NP-hard
 - Consider approximations to \(h^+\).

The FF Heuristic

- Use the planning graph method to construct a plan for the monotone planning problem
- Can be done in poly. time (and is empirically very fast)
- Generates an optimal parallel plan that might not be the best sequential plan
- The number of actions in this plan is used as the heuristic estimate (more informative than the parallel plan length, but not admissible)
- Appears to be a good approximation
The FF System

- **FF (Fast Forward)** is a heuristic search planner developed in Freiburg.
- **Heuristic**: Goal distances are estimated by solving a relaxation of the task in every search state (ignoring negative effects) – the solution is not minimal, however!
- **Search strategy**: Enforced hill-climbing
- **Pruning**: Only a fraction of each state’s successors are considered: only those successors that would be generated by the relaxed solution – with a fall-back strategy considering all successors if we are unsuccessful.

\[FF \text{ used to be one of the fastest planners around; } \]
\[\text{Meanwhile, there is FD, which contains more domain analysis and which is faster because of this.} \]

Solution Quality: **Logistics** in the 2000 competition

Runtime: **Logistics** in the 2000 competition

Summary and Outlook

- Planning generates representation of future behavior.
- Classical planning assumes full observability and deterministic actions.
- Compared with MDPs, one can deal with much larger state spaces.
- Current algorithmic approaches are:
 - planning as satisfiability
 - planning graphs
 - heuristic search planning, which seems to be the most promising approach for satisficing planning.
- Many possible extensions . . .
- Applications in robotic, video games, . . .

\[\text{Come to the Foundations of AI group, if you are interested in pursuing research in this area.} \]