Foundations of Artificial Intelligence

8. Satisfiability and Model Construction

Davis-Putnam-Logemann-Loveland Procedure, Phase Transitions, GSAT

Wolfram Burgard, Maren Bennewitz, and Marco Ragni

Albert-Ludwigs-Universität Freiburg
Contents

1 Motivation

2 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

3 “Average” complexity of the satisfiability problem

4 GSAT: Greedy SAT Procedure
Motivation

- Usually:
 - Given: A logical theory (set of propositions)
 - Question: Does a proposition logically follow from this theory?
 - Reduction to unsatisfiability, which is coNP-complete (complementary to NP problems)

- Sometimes:
 - Given: A logical theory
 - Wanted: Model of the theory
 - Example: Configurations that fulfill the constraints given in the theory
 - Can be “easier” because it is enough to find one model
The DPLL Procedure

DPLL Function

Given a set of clauses Δ defined over a set of variables Σ, return “satisfiable” if Δ is satisfiable. Otherwise return “unsatisfiable”.

1. If $\Delta = \emptyset$ return “satisfiable”

2. If $\square \in \Delta$ return “unsatisfiable”

3. **Unit-propagation Rule:** If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return $\text{DPLL}(\Delta')$.

4. **Splitting Rule:** Select from Σ a variable v which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $\text{DPLL}(\Delta')$

 a. If the call returns “satisfiable”, then return “satisfiable”.

 b. Otherwise assign the other truth-value to v in Δ, simplify to Δ'' and return $\text{DPLL}(\Delta'')$.

(University of Freiburg)
Example (1)

\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]
\[\Delta = \{ \{ a, b, \neg c \}, \{ \neg a, \neg b \}, \{ c \}, \{ a, \neg b \} \} \]

1. **Unit-propagation rule:** \(c \mapsto T \)
\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

1. Unit-propagation rule: \(c \mapsto T \)
 \[\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\} \]
Example (1)

\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

1. Unit-propagation rule: \(c \mapsto T \)
 \(\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\} \)

2. Splitting rule:
Example (1)

\[\Delta = \{ \{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

1. Unit-propagation rule: \(c \mapsto T\)
 \[\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}\]

2. Splitting rule:

2a. \(a \mapsto F\)
 \[\{\{b\}, \{\neg b\}\}\]
Example (1)

\[\Delta = \{ \{ a, b, \neg c \}, \{ \neg a, \neg b \}, \{ c \}, \{ a, \neg b \} \} \]

1. Unit-propagation rule: \(c \mapsto T \)
 \[\{ \{ a, b \}, \{ \neg a, \neg b \}, \{ a, \neg b \} \} \]

2. Splitting rule:

2a. \(a \mapsto F \)
 \[\{ \{ b \}, \{ \neg b \} \} \]

3a. Unit-propagation rule: \(b \mapsto T \)
 \[\{ \Box \} \]
\[\Delta = \{\{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\}\]

1. Unit-propagation rule: \(c \mapsto T\)
 \[\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\}\]

2. Splitting rule:
 2a. \(a \mapsto F\)
 \[\{\{b\}, \{\neg b\}\}\]
 2b. \(a \mapsto T\)
 \[\{\{\neg b\}\}\]

3a. Unit-propagation rule: \(b \mapsto T\)
 \[\{\Box\}\]
Example (1)

\[\Delta = \{ \{a, b, \neg c\}, \{\neg a, \neg b\}, \{c\}, \{a, \neg b\}\} \]

1. Unit-propagation rule: \(c \mapsto T \)
 \(\{\{a, b\}, \{\neg a, \neg b\}, \{a, \neg b\}\} \)

2. Splitting rule:

2a. \(a \mapsto F \)
 \(\{\{b\}, \{\neg b\}\} \)

2b. \(a \mapsto T \)
 \(\{\{\neg b\}\} \)

3a. Unit-propagation rule: \(b \mapsto T \)
 \(\{\square\} \)

3b. Unit-propagation rule: \(b \mapsto F \)
 \(\{\} \)
Example (1)

\[\Delta = \{ \{ a, b, \neg c \}, \{ \neg a, \neg b \}, \{ c \}, \{ a, \neg b \} \} \]

1. Unit-propagation rule: \(c \mapsto T \)
 \[\{ \{ a, b \}, \{ \neg a, \neg b \}, \{ a, \neg b \} \} \]

2. Splitting rule:

2a. \(a \mapsto F \)
 \[\{ \{ b \}, \{ \neg b \} \} \]

3a. Unit-propagation rule: \(b \mapsto T \)
 \[\{ \Box \} \]

2b. \(a \mapsto T \)
 \[\{ \{ \neg b \} \} \]

3b. Unit-propagation rule: \(b \mapsto F \)
 \[\{ \} \]
Example (2)

\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]
\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T \)
Example (2)

\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T \)
 \(\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\} \)
\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T \)
 \[\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\} \]

2. Unit-propagation rule: \(b \mapsto T \)
 \[\{\{a, \neg c\}, \{c\}\} \]
\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T \)
 \(\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\} \)

2. Unit-propagation rule: \(b \mapsto T \)
 \(\{\{a, \neg c\}, \{c\}\} \)

3. Unit-propagation rule: \(c \mapsto T \)
 \(\{\{a\}\} \)
Example (2)

\[\Delta = \{ \{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T\)
 \(\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}\)

2. Unit-propagation rule: \(b \mapsto T\)
 \(\{\{a, \neg c\}, \{c\}\}\)

3. Unit-propagation rule: \(c \mapsto T\)
 \(\{\{a\}\}\)

4. Unit-propagation rule: \(a \mapsto T\)
 \(\{\}\)
Example (2)

\[\Delta = \{\{a, \neg b, \neg c, \neg d\}, \{b, \neg d\}, \{c, \neg d\}, \{d\}\} \]

1. Unit-propagation rule: \(d \mapsto T\)
 \[\{\{a, \neg b, \neg c\}, \{b\}, \{c\}\}\]

2. Unit-propagation rule: \(b \mapsto T\)
 \[\{\{a, \neg c\}, \{c\}\}\]

3. Unit-propagation rule: \(c \mapsto T\)
 \[\{\{a\}\}\]

4. Unit-propagation rule: \(a \mapsto T\)
 \[\{}\]
Properties of DPLL

- DPLL is complete, correct, and guaranteed to terminate.
- DPLL constructs a model, if one exists.
- In general, DPLL requires exponential time (splitting rule!)
- DPLL is polynomial on Horn clauses, i.e., clauses with at most one positive literal

\[\neg A_1 \lor \ldots \lor \neg A_n \lor B \iff \bigwedge_{i} A_i \Rightarrow B \]

→ Heuristics are needed to determine which variable should be instantiated next and which value should be used.

→ In all SAT competitions so far, DPLL-based procedures have shown the best performance.
DPLL on Horn Clauses (1)

Note:

1. The simplifications in DPLL on Horn clauses always generate Horn clauses

2. A set of Horn clauses without unit clauses is satisfiable
 - All clauses have at least one negative literal
 - Assign *false* to all variables

3. If the first sequence of applications of the unit propagation rule in DPLL does not lead to the empty clause, a set of Horn clauses without unit clauses is generated (which is satisfiable according to 2.)
4. Although a set of Horn clauses without a unit clause is satisfiable, DPLL may not immediately recognize it.

 a. If DPLL assigns \textit{false} to a variable, this cannot lead to an unsatisfiable set and after a sequence of unit propagations we are in \textit{the same situation as in 4}.

 b. If DPLL assigns \textit{true}, then we may get an empty clause - perhaps after unit propagation (and have to backtrack) - or the set is still satisfiable and we are in \textit{the same situation as in 4}.
In summary:

1. DPLL executes a sequence of unit propagation steps resulting in
 - an empty clause or
 - a set of Horn clauses without a unit clause, which is satisfiable

2. In the latter case, DPLL proceeds by choosing for one variable:
 - `false`, which does not change the satisfiability
 - `true`, which either
 - leads to an immediate contradiction (after unit propagation) and backtracking or
 - does not change satisfiability

→ Run time is *polynomial* in the number of variables.
We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.

This is clearly also true for the DPLL-procedure.
→ Couldn’t we do better in the average case?

For CNF-formulae in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DPLL needs on average quadratic time (Goldberg 79)!
→ The probability that these formulae are satisfiable is, however, very high.
Conversely, we can, of course, try to identify hard to solve problem instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:

All NP-complete problems have at least one order parameter and the hard to solve problems are around a critical value of this order parameter. This critical value (a phase transition) separates one region from another, such as over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton path ... later also for other NP-complete problems.
Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92):
Clause length k is given. Choose variables for every clause k and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:
Empirical Difficulty

The Davis-Putnam (DPLL) Procedure shows extreme runtime peaks at the phase transition:

Note: Hard instances can exist even in the regions of the more easily satisfiable/unsatisfiable instances!
Notes on the Phase Transition

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.

- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.

- In the phase transition stage, there are many near successes ("close, but no cigar")

 → (limited) possibility of predicting the difficulty of finding a solution based on the parameters

 → (search intensive) benchmark problems are located in the phase region (but they have a special structure)
In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can “solve” much large instances this way.

Standard process for optimization problems: **Local Search**

- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations
 - Main problem: **local maxima**
Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments of CNF formulae (even without injecting noise).
Procedure GSAT

INPUT: a set of clauses α, Max-Flips, and Max-Tries

OUTPUT: a satisfying truth assignment of α, if found

```
begin
  for $i := 1$ to $\text{Max-Tries}$
    $T :=$ a randomly-generated truth assignment
    for $j := 1$ to $\text{Max-Flips}$
      if $T$ satisfies $\alpha$ then return $T$
      $v :=$ a propositional variable such that a change in its
      truth assignment gives the largest increase in
      the number of clauses of $\alpha$ that are satisfied by $T$
      $T := T$ with the truth assignment of $v$ reversed
    end for
  end for
return “no satisfying assignment found”
end
```
The Search Behavior of GSAT

- In contrast to normal local search methods, we must also allow sideways movements!
- Most time is spent searching on plateaus.

![Graph showing the behavior of GSAT over iterations.](graph.png)
State of the Art

- SAT competitions since beginning of the 90s
- Current SAT competitions (http://www.satcompetition.org/):
 - In 2010:
 - Largest “industrial” instances: $> 1,000,000$ literals
- Complete solvers are as good as randomized ones on handcrafted and industrial problem
Concluding Remarks

- **DPLL-based SAT solvers prevail:**
 - Very efficient implementation techniques
 - Good branching heuristics
 - Clause learning

- **Incomplete randomized SAT-solvers**
 - are good (in particular on random instances)
 - but there is no dramatic increase in size of what they can solve
 - parameters are difficult to adjust